Prospects for the Use of Antibody-Drug Conjugates in Cancer Therapy
- Authors: Makarova A.O.1,2, Svirshchevskaya E.V.1, Titov M.M.1, Deyev S.M.1,3,4, Kholodenko R.V.1,5
- 
							Affiliations: 
							- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
- Lomonosov Moscow State University
- Sechenov First Moscow State Medical University
- National Research Center “Kurchatov Institute”
- Real Target LLC
 
- Issue: Vol 51, No 2 (2025)
- Pages: 233-254
- Section: Articles
- URL: https://journal-vniispk.ru/0132-3423/article/view/291758
- DOI: https://doi.org/10.31857/S0132342325020048
- EDN: https://elibrary.ru/LCOTGM
- ID: 291758
Cite item
Abstract
Today, cancer continues to be one of the most dangerous diseases, annually causing the deaths of >9 million people in the world. Therefore, new and more effective methods of cancer therapy are in demand. Monoclonal antibody-based immunotherapy has already shown its effectiveness; and antibody-drug conjugates (ADC), as one of its successful variants, have significant and not yet fully realized potential. ADCs are monoclonal antibodies bound by linkers to cytotoxic drugs. In many clinical trials and already in standard clinical practice ADCs have demonstrated significant advantages over combination therapy with unmodified antibodies and chemotherapy drugs. Due to new achievements in the field of molecular immunology and biotechnology, the potential of ADCs is assessed as a breakthrough, which will allow them to become the most sought-after anticancer drugs in the coming years. Owing to ADC, it has become possible to deliver drugs to tumor cells in a targeted manner without significant toxic effects on healthy tissues and organs. To date, 15 ADC drugs have been approved worldwide for use in clinic, and more than a hundred more drugs of this class are at various stages of clinical trials. At the same time, therapy using ADC is associated with certain side effects and limited efficacy, and therefore there is a need to develop more advanced conjugates. This review examines the history of the development of ADC as a therapeutic class of drugs, their structure, targets and mechanism of action. It also outlines the prospects and directions for further development of ADCs.
Full Text
 
												
	                        About the authors
A. O. Makarova
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences; Lomonosov Moscow State University
														Email: khol@mail.ru
				                					                																			                												                	Russian Federation, 							ul. Miklukho-Maklaya 16/10, Moscow, 117997; Leninskie Gory 1, Moscow, 119991						
E. V. Svirshchevskaya
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
														Email: khol@mail.ru
				                					                																			                												                	Russian Federation, 							ul. Miklukho-Maklaya 16/10, Moscow, 117997						
M. M. Titov
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
														Email: khol@mail.ru
				                					                																			                												                	Russian Federation, 							ul. Miklukho-Maklaya 16/10, Moscow, 117997						
S. M. Deyev
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences; Sechenov First Moscow State Medical University; National Research Center “Kurchatov Institute”
														Email: khol@mail.ru
				                					                																			                												                	Russian Federation, 							ul. Miklukho-Maklaya 16/10, Moscow, 117997; ul. Trubetskaya 8/2, Moscow, 119992; pl. Kurchatova 1, Moscow, 123182						
R. V. Kholodenko
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences; Real Target LLC
							Author for correspondence.
							Email: khol@mail.ru
				                					                																			                												                	Russian Federation, 							ul. Tekstilshchikov 3/3, Troitsk, Moscow Region, 108841						
References
- Chen S., Cao Z., Prettner K., Kuhn M., Yang J., Jiao L., Wang Z., Li W., Geldsetzer P., Bärnighausen T., Bloom D.E., Wang C. // JAMA Oncol. 2023. V. 9. P. 465– 472. https://doi.org/10.1001/jamaoncol.2022.7826
- Amjad M.T., Chidharla A., Kasi A. // StatPearls: StatPearls Publishing, 2023.
- Esfahani K., Roudaia L., Buhlaiga N., Del Rincon S.V., Papneja N., Miller W.H., Jr. // Curr. Oncol. 2020. V. 27. P. 87–97. https://doi.org/10.3747/co.27.5223
- Martinelli E., De Palma R., Orditura M., De Vita F., Ciardiello F. // Clin. Exp. Immunol. 2009. V. 158. P. 1–9. https://doi.org/10.1111/j.1365-2249.2009.03992.x
- Yu S., Liu Q., Han X., Qin S., Zhao W., Li A., Wu K. // Exp. Hematol. Oncol. 2017. V. 6. P. 31. https://doi.org/10.1186/s40164-017-0091-4
- Doronin I.I., Vishnyakova P.A., Kholodenko I.V., Ponomarev E.D., Ryazantsev D.Y., Molotkovskaya I.M., Kholodenko R.V. // BMC Cancer. 2014. T. 14. P. 295. https://doi.org/10.1186/1471-2407-14-295
- Sterner R.C., Sterner R.M. // Blood Cancer J. 2021. V. 11. https://doi.org/10.1038/s41408-021-00459-7
- Fu Z., Li S., Han S., Shi C., Zhang Y. // Signal Transduct. Target Ther. 2022. V. 7. P. 93. https://doi.org/10.1038/s41392-022-00947-7
- Li J.H., Liu L., Zhao X.H. // Biomed. Pharmacother. 2024. V. 177. P. 117106. https://doi.org/10.1016/j.biopha.2024.117106
- Sasso J.M., Tenchov R., Bird R., Iyer K.A., Ralhan K., Rodriguez Y., Zhou Q.A. // Bioconjug. Chem. 2023. V. 34. P. 1951–2000. https://doi.org/10.1021/acs.bioconjchem.3c00374
- Petersen B.H., DeHerdt S.V., Schneck D.W., Bumol T.F. // Cancer Res. 1991. V. 51. P. 2286−2290.
- Trail P.A., Willner D., Lasch S.J., Henderson A.J., Hofstead S., Casazza A.M., Firestone R.A., Hellström I., Hellström K.E. // Science. 1993. V. 261. P. 212–215. https://doi.org/10.1126/science.8327892
- Beck A., Goetsch L., Dumontet C., Corvaïa N. // Nat. Rev. Drug Discov. 2017. V. 16. P. 315–337. https://doi.org/10.1038/nrd.2016.268
- Sievers E.L., Larson R.A., Stadtmauer E.A., Estey E., Löwenberg B., Dombret H., Karanes C., Theobald M., Bennett J.M., Sherman M.L., Berger M.S., Eten C.B., Loken M.R., van Dongen J.J., Bernstein I.D., Appelbaum F.R., Mylotarg Study Group // J. Clin. Oncol. 2001. V. 19. P. 3244–3254. https://doi.org/10.1200/JCO.2001.19.13.3244
- Guerra V.A., DiNardo C., Konopleva M. // Best Pract. Res. Clin. Haematol. 2019. V. 32. P. 145–153. https://doi.org/10.1016/j.beha.2019.05.008
- Lambert J.M., Chari R.V. // J. Med. Chem. 2014. V. 57. P. 6949–6964. https://doi.org/10.1021/jm500766w
- Baah S., Laws M., Rahman K.M. // Molecules. 2021. V. 26. P. 2943. https://doi.org/10.3390/molecules26102943
- Wang Z., Li H., Gou L., Li W., Wang Y. // Acta Pharm. Sin. B. 2023. V. 13. P. 4025–4059. https://doi.org/10.1016/j.apsb.2023.06.015
- Bhushan A., Misra P. // Curr. Oncol. Rep. 2024. V. 26. P. 1224–1235. https://doi.org/10.1007/s11912-024-01582-x
- Chis A.A., Dobrea C.M., Arseniu A.M., Frum A., Rus L.L., Cormos G., Georgescu C., Morgovan C., Butuca A., Gligor F.G., Vonica-Tincu A.L. // Int. J. Mol. Sci. 2024. V. 25. P. 6969. https://doi.org/10.3390/ijms25136969
- Riccardi F., Dal Bo M., Macor P., Toffoli G. // Front. Pharmacol. 2023. V. 14. P.1274088. https://doi.org/10.3389/fphar.2023.1274088
- Staudacher A.H., Brown M.P. // Br. J. Cancer. 2017. V. 117. P. 1736–1742. https://doi.org/10.1038/bjc.2017.367
- Kroemer G., Galassi C., Zitvogel L. // Nat. Immunol. 2022. V. 23. P. 487–500. https://doi.org/10.1038/s41590-022-01132-2
- Bauzon M., Drake P.M., Barfield R.M., Cornali B.M., Rupniewski I., Rabuka D. // Oncoimmunol. 2019. V. 8. P. 1565859. https://doi.org/10.1080/2162402X.2019.1565859
- Janke C., Magiera M.M. // Nat. Rev. Mol. Cell Biol. 2 020. V. 21. P. 307–326. https://doi.org/10.1038/s41580-020-0214-3
- Burris H.A. // Am. Soc. Clin. Oncol. Educ. Book. 2012. P. 159–161. https://doi.org/10.14694/EdBook_AM.2012.32.109
- Schwach J., Abdellatif M., Stengl A. // Front Biosci. (Landmark Ed). 2022. V. 27. P. 240. https://doi.org/10.31083/j.fbl2708240
- Pommier Y. // Nat. Rev. Cancer. 2006. V. 6. P. 789– 802. https://doi.org/10.1038/nrc1977
- Hartley J.A. // Expert Opin. Biol. Ther. 2021. V. 21. P. 931–943. https://doi.org/10.1080/14712598.2020.1776255
- Yao H.P., Zhao H., Hudson R., Tong X.M., Wang M.H. // Drug Discov. Today. 2021. V. 26. P. 1857–1874. https://doi.org/10.1016/j.drudis.2021.06.012
- Yin W., Rogge M. // Clin. Transl. Sci. 2019. V. 12. P. 98–112. https://doi.org/10.1111/cts.12624
- Ramanjulu J.M., Pesiridis G.S., Yang J., Concha N., Singhaus R., Zhang S.Y., Tran J.L., Moore P., Lehmann S., Eberl H.C., Muelbaier M., Schneck J.L., Clemens J., Adam M., Mehlmann J., Romano J., Morales A., Kang J., Leister L., Graybill T.L., Charnley A.K., Ye G., Nevins N., Behnia K., Wolf A.I., Kasparcova V., Nurse K., Wang L., Puhl A.C., Li Y., Klein M., Hopson C.B., Guss J., Bantscheff M., Bergamini G., Reilly M.A., Lian Y., Duffy K.J., Adams J., Foley K.P., Gough P.J., Marquis R.W., Smothers J., Hoos A., Bertin J. // Nature. 2018. V. 564. P. 439–443. https://doi.org/10.1038/s41586-018-0705-y
- Wei Y., Xiang H., Zhang W. // Front. Pharmacol. 2022. V. 13. P. 970553. https://doi.org/10.3389/fphar.2022.970553
- Youle R.J., Strasser A. // Cell Biol. 2008. V. 9. P. 47–59. https://doi.org/10.1038/nrm2308
- Almaliti J., Miller B., Pietraszkiewicz H., Glukhov E., Naman C.B., Kline T., Hanson J., Li X., Zhou S., Valeriote F.A., Gerwick W.H. // Eur. J. Med. Chem. 2019. V. 161. P. 416–432. https://doi.org/10.1016/j.ejmech.2018.10.024
- Simmons J.K., Burke P.J., Cochran J.H., Pittman P.G., Lyon R.P. // Toxicol. Appl. Pharmacol. 2020. V. 392. P. 114932. https://doi.org/10.1016/j.taap.2020.114932
- Jain N., Smith S.W., Ghone S., Tomczuk B. // Pharm. Res. 2015. V. 32. P. 3526–3540. https://doi.org/10.1007/s11095-015-1657-7
- Anderson N.M., Simon M.C. // Curr. Biol. 2020. V. 30. P. R921–R925. https://doi.org/10.1016/j.cub.2020.06.081
- Lu J., Jiang F., Lu A., Zhang G. // Int. J. Mol. Sci. 2016. V. 17. P. 561. https://doi.org/10.3390/ijms17040561
- Kovtun Y.V., Goldmacher V.S. // Cancer Lett. 2007. V. 255. P. 232–240. https://doi.org/10.1016/j.canlet.2007.04.010
- Walsh S.J., Bargh J.D., Dannheim F.M., Hanby A.R., Seki H., Counsell A.J., Ou X., Fowler E., Ashman N., Takada Y., Isidro-Llobet A., Parker J.S., Carroll J.S., Spring D.R. // Chem. Soc. Rev. 2021. V. 50. P. 1305– 1353. https://doi.org/10.1039/d0cs00310g
- von Witting E., Hober S., Kanje S. // Bioconjug. Chem. 2021. V. 32. P. 1515–1524. https://doi.org/10.1021/acs.bioconjchem.1c00313
- Wei C., Zhang G., Clark T., Barletta F., Tumey L.N., Rago B., Hansel S., Han X. // Anal. Chem. 2016. V. 88. P. 4979–4986. https://doi.org/10.1021/acs.analchem.6b00976
- Junutula J.R., Raab H., Clark S., Bhakta S., Leipold D.D., Weir S., Chen Y., Simpson M., Tsai S.P., Dennis M.S., Lu Y., Meng Y.G., Ng C., Yang J., Lee C.C., Duenas E., Gorrell J., Katta V., Kim A., McDorman K., Flagella K., Venook R., Ross S., Spencer S.D., Wong W.L., Lowman H.B., Vandlen R., Sliwkowski M.X., Scheller R.H., Polakis P., Mallet W. // Nat. Biotechnol. 2008. V. 26. P. 925–932. https://doi.org/10.1038/nbt.1480
- Axup J.Y., Bajjuri K.M., Ritland M., Hutchins B.M., Kim C.H., Kazane S.A., Halder R., Forsyth J.S., Santidrian A.F., Stafin K., Lu Y., Tran H., Seller A.J., Biroc S.L., Szydlik A., Pinkstaff J.K., Tian F., Sinha S.C., Felding-Habermann B., Smider V.V., Schultz P.G. // Proc. Natl. Acad. Sci. USA. 2012. V. 109. P. 16101– 16106. https://doi.org/10.1073/pnas.1211023109
- Rabuka D., Rush J.S., deHart G.W., Wu P., Bertozzi C.R. // Nat. Protoc. 2012. V. 7. P. 1052–1067. https://doi.org/10.1038/nprot.2012.045
- Zhu Z., Ramakrishnan B., Li J., Wang Y., Feng Y., Prabakaran P., Colantonio S., Dyba M.A., Qasba P.K., Dimitrov D.S. // MAbs. 2014. V. 6. P. 1190–1200. https://doi.org/10.4161/mabs.29889
- Schumacher F.F., Nunes J.P., Maruani A., Chudasama V., Smith M.E., Chester K.A., Baker J.R., Caddick S. // Org. Biomol. Chem. 2014. V. 12. P. 7261– 7269. https://doi.org/10.1039/c4ob01550a
- Metrangolo V., Engelholm L.H. // Cancers (Basel). 2024.V. 16. P. 447. https://doi.org/10.3390/cancers16020447
- Hughes B. // Nat. Rev. Drug Discov. 2010. V. 9. P. 665–667. https://doi.org/10.1038/nrd3270
- Zhang J., Woods C., He F., Han M., Treuheit M.J., Volkin D.B. // Biochemistry. 2018. V. 57. P. 5466–5479. https://doi.org/10.1021/acs.biochem.8b00575
- Teicher B.A., Chari R.V. // Clin. Cancer Res. 2011. V. 17. P. 6389–6397. https://doi.org/10.1158/1078-0432.CCR-11-1417
- Kholodenko R.V., Kalinovsky D.V., Doronin I.I., Ponomarev E.D., Kholodenko I.V. // Curr. Med. Chem. 2019. V. 26. P. 396–426. https://doi.org/10.2174/0929867324666170817152554
- Lou H., Cao X. // Cancer Commun. (Lond). 2022. V. 42. P. 804–827. https://doi.org/10.1002/cac2.12330
- Kholodenko V., Kalinovsky D.V., Svirshchevskaya E.V., Doronin I.I., Konovalova M.V., Kibardin A.V., Shamanskaya T.V., Larin S.S., Deyev S.M., Kholodenko R.V. // Molecules. 2019. V. 24. P. 3835. https://doi.org/10.3390/molecules24213835
- Hussack G., Ryan S., van Faassen H., Rossotti M., MacKenzie C.R., Tanha J. // PLoS One. 2018. V. 13. P.e0208978. https://doi.org/10.1371/journal.pone.0208978
- Muyldermans S. // Annu. Rev. Biochem. 2013. V. 82. P. 775–797. https://doi.org/10.1146/annurev-biochem-063011-092449
- Thakur A., Huang M., Lum L.G. // Blood Rev. 2018. V. 32. P. 339–347. https://doi.org/10.1016/j.blre.2018.02.004
- Newman M.J., Benani D.J. // J. Oncol. Pharm. Pract. 2016. V. 22. P. 639–645. https://doi.org/10.1177/1078155215618770
- Zeng H., Ning W., Liu X., Luo W., Xia N. // Front. Med. 2024. V. 18. P. 597–621. https://doi.org/10.1007/s11684-024-1072-8
- Strohl W.R. // Protein Cell. 2018. V. 9. P. 86–120. https://doi.org/10.1007/s13238-017-0457-8
- Esapa B., Jiang J., Cheung A., Chenoweth A., Thurston D.E., Karagiannis S.N. // Cancers (Basel). 2023. V. 15. P. 1845. https://doi.org/10.3390/cancers15061845
- Ingle G.S., Chan P., Elliott J.M., Chang W.S., Koeppen H., Stephan J.P., Scales S.J. // Br. J. Haematol. 2008. V. 140. P. 46–58. https://doi.org/10.1111/j.1365-2141.2007.06883.x
- Short N.J., Kantarjian H. // Lancet Haematol. 2023. V. 10. P. e382–e388. https://doi.org/10.1016/S2352-3026(23)00064-9
- Xing L., Liu Y., Liu J. // Cancers (Basel). 2023. V. 15. P. 2240. https://doi.org/10.3390/cancers15082240
- Burke J.M., Morschhauser F., Andorsky D., Lee C., Sharman J.P. // Expert. Rev. Clin. Pharmacol. 2020. V. 13. P. 1073–1083. https://doi.org/10.1080/17512433.2020.1826303
- Criscitiello C., Morganti S., Curigliano G. // J. Hematol. Oncol. 2021. V. 14. P. 20. https://doi.org/10.1186/s13045-021-01035-z
- de Azambuja E., Bedard P.L., Suter T., PiccartGebhart M. // Target Oncol. 2009. V. 4. P. 77–88. https://doi.org/10.1007/s11523-009-0112-2
- Shvartsur A., Bonavida B. // Genes Cancer. 2015. V. 6. P. 84–105. https://doi.org/10.18632/genesandcancer.40
- Ordu M., Karaaslan M., Sirin M.E., Yilmaz M. // North Clin. Istanb. 2023. V. 10. P. 583–588. https://doi.org/10.14744/nci.2023.36034
- Gonzalez T., Muminovic M., Nano O., Vulfovich M. // Int. J. Mol. Sci. 2024. V. 25. P. 1046. https://doi.org/10.3390/ijms25021046
- Ahmadi S.E., Shabannezhad A., Kahrizi A., Akbar A., Safdari S.M., Hoseinnezhad T., Zahedi M., Sadeghi S., Mojarrad M.G., Safa M. // Biomark Res. 2023. V. 11. P. 60. https://doi.org/10.1186/s40364-023-00504-6
- Rui R., Zhou L., He S. // Front. Immunol. 2023. V. 14. P. 1212476. https://doi.org/10.3389/fimmu.2023.1212476
- Anderson AC, Joller N, Kuchroo VK. // Immunity. 2016. V. 44 P.989-1004. https://doi.org/10.1016/j.immuni.2016.05.001
- Negative A., Year S.S., Jeter A., Saragovi H.U. // Front. Oncol. 2023. V. 13. P. 1261090. https://doi.org/10.3389/fonc.2023.1261090
- Philippova J., Shevchenko J., Sennikov S. // Front. Immunol. 2024. V. 15. P. 1371345. https://doi.org/10.3389/fimmu.2024.1371345
- Nazha B., Inal C., Owonikoko T.K. // Front. Oncol. 2020. V. 10. P. 1000. https://doi.org/10.3389/fonc.2020.01000
- Machy P., Mortier E., Birklé S. // Front. Pharmacol. 2023. V. 14. P. 1249929. https://doi.org/10.3389/fphar.2023.1249929
- Ivanov N.S., Kachanov D.Y., Larin S.S., Mollaev M.D., Konovalov D.M., Shamanskaya T.V. // Russ. J. Pediatr. Hematol. Oncol. 2021. V. 8. P. 47–59.
- Orsi G., Barbolini M., Ficarra G., Tazzioli G., Manni P., Petrachi T., Mastrolia I., Orvieto E., Spano C., Prapa M., Kaleci S., D’Amico R., Guarneri V., Dieci M.V., Cascinu S., Conte P., Piacentini F., Dominici M. // Oncotarget. 2017. V. 8. P. 31592–31600. https://doi.org/10.18632/oncotarget.16363
- Ahmed M., Cheung N.K. // FEBS Lett. 2014. V. 588. P. 288–297. https://doi.org/10.1016/j.febslet.2013.11.030
- Kholodenko I.V., Kalinovsky D.V., Doronin I.I., Deyev S.M., Kholodenko R.V. // J. Immunol. Res. 2018. V. 2018. P. 7394268. https://doi.org/10.1155/2018/7394268
- Ploessl C., Pan A., Maples K.T., Lowe D.K. // Ann. Pharmacother. 2016. V. 50. P. 416–422. https://doi.org/10.1177/1060028016632013
- Kalinovsky D.V., Kibardin A.V., Kholodenko I.V., Svirshchevskaya E.V., Doronin I.I., Konovalova M.V., Grechikhina M.V., Rozov F.N., Larin S.S., Deyev S.M., Kholodenko R.V. // J. Immunother. Cancer. 2022. V. 10. P. e004646. https://doi.org/10.1136/jitc-2022-004646
- Kalinovsky D.V., Kholodenko I.V., Kibardin A.V., Doronin I.I., Svirshchevskaya E.V., Ryazantsev D.Y., Konovalova M.V., Rozov F.N., Larin S.S., Deyev S.M., Kholodenko R.V. // Int. J. Mol. Sci. 2023. V. 24. P. 1239. https://doi.org/10.3390/ijms24021239
- Kalinovsky D.V., Kholodenko I.V., Svirshchevskaya E.V., Kibardin A.V., Ryazantsev D.Y., Rozov F.N., Larin S.S., Deyev S.M., Kholodenko R.V. // Curr. Issues Mol. Biol. 2023. V. 45. P. 8112–8125. https://doi.org/10.3390/cimb45100512
- Liu K., Li M., Li Y., Li Y., Chen Z., Tang Y., Yang M., Deng G., Liu H. // Mol. Cancer. 2024. V. 23. P. 62. https://doi.org/10.1186/s12943-024-01963-7
- Ma X., Wang M., Ying T., Wu Y. // Antib. Ther. 2024. V. 7. P. 114–122. https://doi.org/10.1093/abt/tbae005
- Su Z., Xiao D., Xie F., Liu L., Wang Y., Fan S., Zhou X., Li S. // Acta Pharm. Sin. B. 2021. V. 11. P. 3889–3907. https://doi.org/10.1016/j.apsb.2021.03.042
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
				

 Open Access
		                                Open Access Access granted
						Access granted




