Comparison of DNA Analysis on Biochips with Brush Polymer Cells and Cross-Linked Polymer Cells

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The regulation of substrate surface properties in biochip technology opens the possibility of optimizing platforms for efficient biomolecule recognition. The research is aimed at exploring the use of brush polymers to improve the sensitivity and speed of DNA analysis on biochips. Brush polymer cells for biochips were prepared by UV-initiated polymerization of monomers from the surface on polyethylene terephthalate substrates. Cross-linked hydrogel polymer cells for biochips were prepared on polybutylene terephthalate substrates by copolymerization of gel components with DNA probes. The probes in brush polymer cells were immobilized through activated carboxyl groups. A single-stranded DNA target with a length of 124 nucleotides corresponding to the 7th exon of the human ABO gene was used for hybridization analysis. Hybridization of the DNA target was studied on biochips with cells made of brush polymers and crosslinked polyacrylamide hydrogels. The results of hybridization analysis on biochips were evaluated by digital fluorescence microscopy. Higher intensity of fluorescence signals and higher ratio of signals of cells with perfect duplexes to those of cells with imperfect duplexes were observed in cells from brush polymers compared to cells from 3D cross-linked polymers. Achievement of hybridization signal up to 90% of saturation occurred in the same time in both cell types. The relevance of this work stems from the need for highly accurate and efficient diagnostic methods to analyze biomolecules with minimal time and reagent consumption. The development of biochips based on brush polymers will increase the accuracy and sensitivity of molecular studies, which is especially important for early diagnosis of diseases.

About the authors

R. A. Miftakhov

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: mr.miftahov20@yandex.ru
Moscow, 119991 Russia

G. F. Shtylev

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Moscow, 119991 Russia

I. Yu. Shishkin

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Moscow, 119991 Russia

V. E. Shershov

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Moscow, 119991 Russia

V. E. Kuznetsova

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Moscow, 119991 Russia

S. A. Surzhikov

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Moscow, 119991 Russia

V. A. Vasiliskov

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Moscow, 119991 Russia

O. A. Zasedateleva

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Moscow, 119991 Russia

A. Yu. Ikonnikova

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Moscow, 119991 Russia

T. V. Nasedkina

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Moscow, 119991 Russia

A. V. Chudinov

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Moscow, 119991 Russia

References

  1. Donatin E., Drancourt M. // Méd. Maladies Infect. 2012. V. 42. P. 453-459. https://doi.org/10.1016/j.medmal.2012.07.017
  2. Иконникова А.Ю., Яценко Ю.Е., Кременецкая О.С., Виноградова О.Ю., Фесенко Д.О., Абрамов И.С., Овсепян В.А., Наседкина Т.В. // Мол. биология. 2016. Т. 50. С. 474-479. https://doi.org/10.7868/S0026898416020087
  3. Baum M., Bielau S., Rittner N., Schmid K., Eggelbusch K., Dahms M., Schlauersbach A., Tahedl H., Beier M., Guimil R., Scheffer M., Hermann C., Funk J.-M., Wixmerten A., Rebscher H., Honig M., Andreae C., Buchner D., Moschel E., Glathe A., Jager E., Thom M., Greil A., Bestvater F., Obermeier F., Burgmaier J., Thome K., Weichert S., Hein S., Binnewies T., Foitzik V., Muller M., Stahler C.F., Stahler P.F. // Nucleic Acids Res. 2003. V. 31. P. e151. https://doi.org/10.1093/nar/gng151
  4. Ravan H., Kashanian S., Sanadgol N., BadoeiDalfard A., Karami Z. // Anal. Biochem. 2014. V. 444. P. 41-46. https://doi.org/10.1016/j.ab.2013.09.032
  5. Traeger J.C., Lamberty Z., Schwartz D.K. // ACS Nano. 2019. V. 13. P. 7850-7859. https://doi.org/10.1021/acsnano.9b02157
  6. Sethi D., Gandhi R.P., Kumar P., Gupta K.C. // Biotechnol. J. 2009. V. 4. P. 1513-1529. https://doi.org/10.1002/biot.200900162
  7. Miftakhov R.A., Lapa S.A., Kuznetsova V.E., Zolotov A.M., Vasiliskov V.A., Shershov V.E., Surzhikov S.A., Zasedatelev A.S., Chudinov A.V. // Russ. J. Bioorg. Chem. 2021. V. 47. P. 1345-1347. https://doi.org/10.1134/S1068162021060182
  8. Wu Y., Lai R.Y. // Anal. Chem. 2014. V. 86. P. 8888- 8895. https://doi.org/10.1021/ac5027226
  9. Guschin D., Yershov G., Zaslavsky A., Gemmell A., Shick V., Proudnikov D., Arenkov P., Mirzabekov A. // Anal. Biochem. 1997. V. 250. P. 203-211. https://doi.org/10.1006/abio.1997.2209
  10. Rubina A.Yu., Pan’kov S.V., Dementieva E.I., Pen’kov D.N., Butygin A.V., Vasiliskov V.A., Chudinov A.V., Mikheikin A.L., Mikhailovich V.M., Mirzabekov A.D. // Anal. Biochem. 2004. V. 325. P. 92-106. https://doi.org/10.1016/j.ab.2003.10.010
  11. Sandrin D., Wagner D., Sitta C.E., Thoma R., Felekyan S., Hermes H.E., Janiak C., de Sousa Amadeu N., Kühnemuth R., Löwen H., Egelhaaf S.U., Seidel C.A.M. // Phys. Chem. Chem. Phys. 2016. V. 18. P. 12860-12876. https://doi.org/10.1039/C5CP07781H
  12. Olivier A., Meyer F., Raquez J.-M., Damman P., Dubois P. // Progr. Polym. Sci. 2012. V. 37. P. 157-181. https://doi.org/10.1016/j.progpolymsci.2011.06.002
  13. Demirci S., Caykara T. // Mater. Sci. Eng. C. Mater. Biol. Appl. 2013. V. 33. P. 111-120. https://doi.org/10.1016/j.msec.2012.08.015
  14. Shtylev G.F., Shishkin I.Yu., Shershov V.E., Kuznetsova V.E., Kachulyak D.A., Butvilovskaya V.I., Levashova A.I., Vasiliskov V.A., Zasedateleva O.A., Chudinov A.V. // Russ. J. Bioorg. Chem. 2024. V. 50. P. 2036-2049. https://doi.org/10.1134/S1068162024050339
  15. Cimen D., Caykara T. // Polym. Chem. 2015. V. 6. P. 6812-6818. https://doi.org/10.1039/C5PY00923E
  16. Miftakhov R.A., Ikonnikova A.Yu., Vasiliskov V.A., Lapa S.A., Levashova A.I., Kuznetsova V.E., Shershov V.E., Zasedatelev A.S., Nasedkina T.V., Chudinov A.V. // Russ. J. Bioorg. Chem. 2023. V. 49. P. 1143-1150. https://doi.org/10.1134/S1068162023050217
  17. Wang C., Yan Q., Liu H.-B., Zhou X.-H., Xiao S.-J. // Langmuir. 2011. V. 27. P. 12058-12068. https://doi.org/10.1021/la202267p
  18. Lapa S.A., Klochikhina E.S., Miftakhov R.A., Zasedatelev A.S, Chudinov A.V. // Russ. J. Bioorg. Chem. 2021. V. 47. P. 1122-1125. https://doi.org/10.1134/S1068162021050290
  19. Wei Q., Liu S., Huang J., Mao X., Chu X., Wang Y., Qiu M. Y., Mao Y., Xie Y., Li Y. // J. Biochem. Mol. Biol. 2004. V. 37. P. 439-444. https://doi.org/10.5483/BMBRep.2004.37.4.439

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».