Белки холодового шока бактерий как инструмент адаптации к стрессу

Обложка

Цитировать

Полный текст

Аннотация

Бактерии выработали ряд механизмов, позволяющих справляться со стрессом и приспосабливаться к изменяющимся условиям окружающей среды. Семейство бактериальных белков, содержащих функциональный домен холодового шока, – высококонсервативные белки, связывающие нуклеиновые кислоты, модулирующие транскрипцию и посттранскрипционные события у бактерий. Для многих бактерий показано, что белки холодового шока регулируют экспрессию различных генов, вовлеченных в процессы вирулентности и устойчивости бактерий к стрессам. В обзоре освещены новые данные о механизмах действия и роли белков холодового шока в регуляции экспрессии у внутриклеточных бактериальных патогенов.

Об авторах

А. С. Григоров

ФГБУН “Институт биоорганической химии им. М.М. Шемякина и Ю.А. Овчинникова” РАН

Автор, ответственный за переписку.
Email: artgrigorov@gmail.com
Россия, 117997, Москва, ул. Миклухо-Маклая, 16/10

Т. Л. Ажикина

ФГБУН “Институт биоорганической химии им. М.М. Шемякина и Ю.А. Овчинникова” РАН

Email: artgrigorov@gmail.com
Россия, 117997, Москва, ул. Миклухо-Маклая, 16/10

Список литературы

  1. Link T.M., Valentin-Hansen P., Brennana R.G. // Proc. Natl. Acad. Sci. USA. 2009. V. 106. P. 19292–19297. https://doi.org/10.1073/PNAS.0908744106
  2. Vogel J., Luisi B.F. // Nat. Rev. Microbiol. 2011. V. 9. P. 578–589. https://doi.org/10.1038/NRMICRO2615
  3. Smirnov A., Förstner K.U., Holmqvist E., Otto A., Günster R., Becher D., Reinhardt R., Vogel J. // Proc. Natl. Acad. Sci. USA. 2016. V. 113. P. 11591–11596. https://doi.org/10.1073/pnas.1609981113
  4. Smirnov A., Wang C., Drewry L.L., Vogel J. // EMBO J. 2017. V. 36. P. 1029–1045. https://doi.org/10.15252/EMBJ.201696127
  5. Ermolenko D.N., Makhatadze G.I. // Cell. Mol. Life Sci. 2002. V. 59. P. 1902–1913. https://doi.org/10.1007/PL00012513
  6. Schindelin H., Jiang W., Inouye M., Heinemann U. // Proc. Natl. Acad. Sci. USA. 1994. V. 91. P. 5119–5123. https://doi.org/10.1073/PNAS.91.11.5119
  7. Rennella E., Sára T., Juen M., Wunderlich C., Imbert L., Solyom Z., Favier A., Ayala I., Weinhäupl K., Schanda P., Konrat R., Kreutz C., Brutscher B. // Nucleic Acids Res. 2017. V. 45. P. 4255–4268. https://doi.org/10.1093/NAR/GKX044
  8. Horn G., Hofweber R., Kremer W., Kalbitzer H.R. // Cell. Mol. Life Sci. 2007. V. 64. P. 1457–1470. https://doi.org/10.1007/S00018-007-6388-4
  9. Goldstein J., Pollitt N.S., Inouye M. // Proc. Natl. Acad. Sci. USA. 1990. V. 87. P. 283–287. https://doi.org/10.1073/PNAS.87.1.283
  10. Yamanaka K., Inouye M. // J. Bacteriology. 1997. V. 179. P. 5126–5130. https://doi.org/10.1128/JB.179.16.5126-5130.1997
  11. Yu T., Keto-Timonen R., Jiang X., Virtanen J.P., Korkeala H. // Int. J. Mol. Sci. 2019. V. 20. P. 4059. https://doi.org/10.3390/IJMS20164059
  12. Jiang W., Hou Y., Inouye M. // J. Biol. Chem. 1997. V. 272. P. 196–202. https://doi.org/10.1074/JBC.272.1.196
  13. Giangrossi M., Gualerzi C.O., Pon C.L. // Biochimie. 2001. V. 83. P. 251–259. https://doi.org/10.1016/S0300-9084(01)01233-0
  14. Jones P.G., Krah R., Tafuri S.R., Wolffe A.P. // J. Bacteriol. 1992. V. 174. P. 5798–5802. https://doi.org/10.1128/JB.174.18.5798-5802.1992
  15. Bae W., Xia B., Inouye M., Severinov K. // Proc. Natl. Acad. Sci. USA. 2000. V. 97. P. 7784–7789. https://doi.org/10.1073/pnas.97.14.7784
  16. Bae W., Jones P.G., Inouye M. // J. Bacteriology. 1997. V. 179. P. 7081–7088. https://doi.org/10.1128/JB.179.22.7081-7088.1997
  17. Wu L., Ma L., Li X., Huang Z., Gao X. // Mol. Plant Pathol. 2019. V. 20. P. 382–391. https://doi.org/10.1111/MPP.12763
  18. la Teana A., Brandi A., Falconi M., Spurio R., Pon C.L., Gualerzi C.O. // Proc. Natl. Acad. Sci. USA. 1991. V. 88. P. 10907–10911. https://doi.org/10.1073/PNAS.88.23.10907
  19. Hwang J., Severinov K., Phadtare S., Inouye M. // Gen. Cells. 2003. V. 8. P. 801–810. https://doi.org/10.1046/j.1365-2443.2003.00675.x
  20. Caballero C.J., Menendez-Gil P., Catalan-Moreno A., Vergara-Irigaray M., García B., Segura V., Irurzun N., Villanueva M., de Los Mozos I.R., Solano C., Lasa I., Toledo-Arana A. // Nucleic. Acids Res. 2018. V. 46. P. 1345. https://doi.org/10.1093/NAR/GKX1284
  21. Zhang Y., Burkhardt D.H., Rouskin S., Li G.W., Weissman J.S., Gross C.A. // Mol. Cell. 2018. V. 70. P. 274.e7–286.e7. https://doi.org/10.1016/J.MOLCEL.2018.02.035
  22. Choi J., Salvail H., Groisman E.A. // Nucleic. Acids Res. 2021. V. 49. P. 11614–11628. https://doi.org/10.1093/NAR/GKAB992
  23. Hofweber R., Horn G., Langmann T., Balbach J., Kremer W., Schmitz G., Kalbitzer H.R. // FEBS J. 2005. V. 272. P. 4691–4702. https://doi.org/10.1111/J.1742-4658.2005.04885.X
  24. Faßhauer P., Busche T., Kalinowski J., Mäder U., Poehlein A., Daniel R., Stülke J. // Microorganisms. 2021. V. 9. P. 1434. https://doi.org/10.3390/microorganisms9071434
  25. Michaux C., Holmqvist E., Vasicek E., Sharan M., Barquist L., Westermann A.J., Gunn J.S., Vogel J. // Proc. Natl. Acad. Sci. USA. 2017. V. 114. P. 6824–6829. https://doi.org/10.1073/pnas.1620772114
  26. Prezza G., Ryan D., Mädler G., Reichardt S., Barquist L., Westermann A.J. // Mol. Microbiol. 2022. V. 117. P. 67–85. https://doi.org/10.1111/MMI.14793
  27. Płociński P., Macios M., Houghton J., Niemiec E., Płocińska R., Brzostek A., Słomka M., Dziadek J., Young D., Dziembowski A. // Nucl. Acids Res. 2019. V. 47. P. 5892–5905. https://doi.org/10.1093/NAR/GKZ251
  28. Feng Y., Huang H., Liao J., Cohen S.N. // J. Biol. Chem. 2001. V. 276. P. 31651–31656. https://doi.org/10.1074/JBC.M102855200
  29. Loepfe C., Raimann E., Stephan R., Tasara T. // Foodborne Pathogens Dis. 2010. V. 7. P. 775–783. https://doi.org/10.1089/FPD.2009.0458
  30. Schmid B., Klumpp J., Raimann E., Loessner M.J., Stephan R., Tasara T. // Appl. Environ. Microbiol. 2009. V. 75. P. 1621–1627. https://doi.org/10.1128/AEM.02154-08
  31. Eshwar A.K., Guldimann C., Oevermann A., Tasara T. // Front. Cell. Infect. Microbiol. 2017. V. 7. P. 453. https://doi.org/10.3389/fcimb.2017.00453
  32. Portnoy D.A., Suzanne Jacks P., Hinrichs D.J. // J. Exp. Med. 1988. V. 167. P. 1459–1471. https://doi.org/10.1084/JEM.167.4.1459
  33. Slepkov E.R., Bitar A.P., Marquis H. // Biochem. J. 2010. V. 432. P. 557–566. https://doi.org/10.1042/BJ20100557
  34. Glomski I.J., Gedde M.M., Tsang A.W., Swanson J.A., Portnoy D.A. // J. Cell. Biol. 2002. V. 156. P. 1029–1038. https://doi.org/10.1083/JCB.200201081
  35. Kocks C., Gouin E., Tabouret M., Berche P., Ohayon H., Cossart P. // Cell. 1992. V. 68. P. 521–531. https://doi.org/10.1016/0092-8674(92)90188-I
  36. Welch M.D., Iwamatsu A., Mitchison T.J. // Nature. 1997. V. 385. P. 265–269. https://doi.org/10.1038/385265a0
  37. Travier L., Guadagnini S., Gouin E., Dufour A., Chenal-Francisque V., Cossart P., Olivo-Marin J.C., Ghigo J.M., Disson O., Lecuit M. // PLoS Pathog. 2013. V. 9. P. e1003131. https://doi.org/10.1371/JOURNAL.PPAT.1003131
  38. Crawford R.W., Rosales-Reyes R., Ramírez-Aguilar M.D.L.L., Chapa-Azuela O., Alpuche-Aranda C., Gunn J.S. // Proc. Natl. Acad. Sci. USA. 2010. V. 107. P. 4353–4358. https://doi.org/10.1073/pnas.1000862107
  39. Ray S., da Costa R., Das M., Nandi D. // J. Biol. Chem. 2019. V. 294. P. 9084–9099. https://doi.org/10.1074/JBC.RA119.008209
  40. Batte J.L., Samanta D., Elasri M.O. // Microbiology (Reading). 2016. V. 162. P. 575–589. https://doi.org/10.1099/MIC.0.000243
  41. Pandey S., Sahukhal G.S., Elasri M.O. // J. Bacteriol. 2019. V. 201. https://doi.org/10.1128/JB.00417-19
  42. Wang Z., Wang S., Wu Q. // FEMS Microbiol. Lett. 2014. V. 354. P. 27–36. https://doi.org/10.1111/1574-6968.12430
  43. Wang Z., Liu W., Wu T., Bie P., Wu Q. // Sci. China Life Sci. 2016. V. 59. P. 417–424. https://doi.org/10.1007/S11427-015-4981-6
  44. Weldingh K., Andersen P. // FEMS Immunol. Med. Microbiol. 1999. V. 23. P. 159–164. https://doi.org/10.1111/J.1574-695X.1999.TB01235.X
  45. D’Auria G., Esposito C., Falcigno L., Calvanese L., Iaccarino E., Ruggiero A., Pedone C., Pedone E., Berisio R. // Biochem. Biophys. Res. Commun. 2010. V. 402. P. 693–698. https://doi.org/10.1016/J.BBRC.2010.10.086
  46. Kumar A., Alam A., Tripathi D., Rani M., Khatoon H., Pandey S., Ehtesham N.Z., Hasnain S.E. // Semin. Cell Dev. Biol. 2018. V. 84. P. 147–157. https://doi.org/10.1016/J.SEMCDB.2018.01.003
  47. Huang L., Liu W., Jiang Q., Zuo Y., Su Y., Zhao L., Qin Y., Yan Q. // Front. Cell. Infect. Microbiol. 2018. V. 8. P. 207. https://doi.org/10.3389/FCIMB.2018.00207/BIBTEX
  48. Huang L., Zhao L., Qi W., Xu X., Zhang J., Zhang J., Yan Q. // Aquaculture. 2020. V. 518. P. 734861. https://doi.org/10.1016/J.AQUACULTURE.2019.734861
  49. Liu Y., Tan X., Cheng H., Gong J., Zhang Y., Wang D., Ding W. // Microb. Pathog. 2020. V. 142. P. 104091. https://doi.org/10.1016/J.MICPATH.2020.104091
  50. Schwenk S., Arnvig K.B. // Pathogens Dis. 2018. V. 76. P. 35. https://doi.org/10.1093/FEMSPD/FTY035
  51. Wexler A.G., Goodman A.L. // Nat. Microbiol. 2017. V. 2. P. 1–11. https://doi.org/10.1038/nmicrobiol.2017.26

© А.С. Григоров, Т.Л. Ажикина, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».