Antituberculosis Action of the Synthetic Peptide LKEKK

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In this work, the activity of the synthetic peptide LKEKK was investigated in a mouse model of tuberculosis induced by Mycobacterium bivis-bovinus 8 strain. Therapy with peptide at doses of 0.01, 0.1 and 1 μg/kg (5 daily injections) significantly reduced the lung injury index of mice compared to animals in the control groups (no treatment and isoniazid treatment). Using [3H]LKEKK, it was shown that the high sensitivity of peritoneal macrophages and splenocytes of infected mice to the peptide was maintained for at least three weeks (Kd 18.6 and 16.7 nM for macrophage and splenocyte membranes, respectively).A study of cytokine production by splenocytes of infected mice showed that on the 24th day after treatment with the peptide (doses of 1 and 10 µg/kg) the secretion of IL-2 was restored to the level observed in uninfected animals. IFN-γ production by spleen cells of infected mice also significantly increased upon peptide treatment. At the same time, IL-4 production decreased in splenocytes. In addition, the peptide treatment stimulated the phagocytic activity of peritoneal macrophages, which was reduced due to tuberculosis infection. Thus, the synthetic peptide LKEKK increased the effectiveness of anti-tuberculosis therapy, as well as the strength of the immune response. The peptide can be used in complex therapy of tuberculosis.

Texto integral

Acesso é fechado

Sobre autores

E. Navolotskaya

Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry

Autor responsável pela correspondência
Email: navolotskaya@bibch.ru
Rússia, prosp. Nauki 6, Pushchino, 142290

D. Zinchenko

Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry

Email: navolotskaya@bibch.ru
Rússia, prosp. Nauki 6, Pushchino, 142290

A. Kolobov

State Research Center for Institute of Highly Pure Bioprepararions, FMBA of the Russian Federation

Email: navolotskaya@bibch.ru
Rússia, ul. Pudozhskaya 7, St. Petersburg 197110

Y. Zolotarev

Institute of Molecular Genetics, Russian Academy of Science

Email: navolotskaya@bibch.ru
Rússia, pl. akad. Kurchatova 2, Moscow, 123182

A. Murashev

Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry

Email: navolotskaya@bibch.ru
Rússia, prosp. Nauki 6, Pushchino, 142290

Bibliografia

  1. Churchyard G., Kim P., Shah N.S., Rustomjee R., Gandhi N., Mathema B., Dowdy D., Kasmar A., Cardenas V. // J. Infect. Dis. 2017. V. 216. P. S629–S635. https://doi.org/10.1093/infdis/jix362
  2. Furin J., Cox H., Pai M. // Lancet. 2019. V. 393. P. 1642–1656. https://doi.org/10.1016/S0140-6736(19)30308-3
  3. Natarajan A., Beena P.M., Devnikar A.V., Mali S. // Indian. J. Tuberc. 2020. V. 67. P. 295–311. https://doi.org/10.1016/j.ijtb.2020.02.005
  4. Jacobo-Delgado Y.M., Rodríguez-Carlos A., Serrano C.J., Rivas-Santiago B. // Front. Immunol. 2023. V. 14. P. 1194923. https://doi.org/10.3389/fimmu.2023.1194923
  5. Chiaradia L., Lefebvre C., Parra J., Marcoux J., Burlet-Schiltz O., Etienne G., Tropis M., Daffé M. // Sci. Rep. 2017. V. 7. P. 12807. https://doi.org/10.1038/s41598-017-12718-4
  6. Stokas H., Rhodes H.L., Purdy G.E. // Tuberculosis. 2020. V. 125. P. 102007. https://doi.org/10.1016/j.tube.2020.102007
  7. Grzegorzewicz A.E., de Sousa-d’Auria C., McNeil M.R., Huc-Claustre E., Jones V., Petit C., Angala S.K., Zemanová J., Wang Q., Belardinelli J.M., Gao Q., Ishizaki Y., Mikušová K., Brennan P.J., Ronning D.R., Chami M., Houssin C., Jackson M. // J. Biol. Chem. 2016. V. 291. P. 18867–18879. https://doi.org/10.1074/jbc.M116.739227
  8. Singh P., Rameshwaram N.R., Ghosh S., Mukhopadhyay S. // Future Microbiol. 2018. V. 13. P. 689– 710. https://doi.org/10.2217/fmb-2017-0135
  9. Singh G., Kumar A., Maan P., Kaur J. // Curr. Drug Targets. 2017. V. 18. P. 1904–1918. https://doi.org/10.2174/1389450118666170711150034
  10. Khadela A., Chavda V.P., Postwala H., Shah Y., Mistry P., Apostolopoulos V. // Vaccines (Basel). 2022. V. 10. P. 1740. https://doi.org/10.3390/vaccines10101740
  11. Navolotskaya E.V., Sadovnikov V.B., Zinchenko D.V., Vladimirov V.I., Zolotarev Y.A., Lipkin V.M., Murashev A.N. // Russ. J. Bioorg. Chem. 2019. V. 45. P. 122–128. https://doi.org/10.1134/S1068162019020092
  12. Navolotskaya E.V., Sadovnikov V.B., Zinchenko D.V., Zav’yalov V.P., Murashev A.N. // J. Clin. Exp. Immunol. 2021. V. 6. P. 356–361. https://doi.org/doi.org/10.33140/JCEI.06.05.02
  13. Navolotskayaa E.V., Zinchenkoa D.V., Murashev A.N. // Russ. J. Bioorg. Chem. 2023. V. 49. P. 35–40. https://doi.org/10.1134/S106816202301020X
  14. Navolotskaya E.V., Sadovnikov V.B., Zinchenko D.V., Murashev A.N. // J. Clin. Exp. Immunol. 2023. V. 8. P. 590–595. https://doi.org/10.33140/JCEI.08.03.01
  15. Ellner J.J. // J. Lab. Clin. Med. 1997. V. 130. P. 469– 475. https://doi.org/10.1016/s0022-2143(97)90123-2
  16. Estrada García I., Hernández Pando R., Ivanyi J. // Front. Immunol. 2021. V. 12. P. 684200. https://doi.org/10.3389/fimmu.2021.684200
  17. Torres-Juarez F., Trejo-Martínez L.A., Layseca-Espinosa E., Leon-Contreras J.C., Enciso-Moreno J.A., Hernandez-Pando R., Rivas-Santiago B. // Microb. Pathog. 2021. V. 153. P. 104768. https://doi.org/10.1016/j.micpath.2021.104768
  18. Kaufmann S.H., Ladel C.H., Flesch I.E. // Ciba Found Symp. 1995. V. 195. P. 123–132. https://doi.org/10.1002/9780470514849.ch9
  19. Mustafa T., Phyu S., Nilsen R., Jonsson R., Bjune G. // Scand. J. Immunol. 2000. V. 51. P. 548–556. https://doi.org/10.1046/j.1365-3083.2000.00721.x
  20. Vasiliu A., Martinez L., Gupta R.K., Hamada Y., Ness T., Kay A., Bonnet M., Sester M., Kaufmann S.H.E., Lange C., Mandalakas A.M. // Clin. Microbiol. Infect. 2024. V. 30. P. 1123-1130. https://doi.org/10.1016/j.cmi.2023.10.023
  21. Lange C., Aaby P., Behr M.A., Donald P.R., Kaufmann S.H.E., Netea M.G., Mandalakas A.M. // Lancet Infect. Dis. 2022. V. 22. P. e2–e12. https://doi.org/10.1016/S1473-3099(21)00403-5
  22. Baliko Z., Szereday L., Szekeres-Bartho J. // FEMS Immunol. 1998. Med. Microbiol. V. 22. P. 199–204. https://doi.org/10.1111/j.1574-695X.1998.tb01207.x
  23. Dieli F., Singh M., Spallek R., Romano A., Titone L., Sireci G., Friscia G., Di Sano C., Santini D., Salerno A., Ivanyi J. // Scand. J. Immunol. 2000. V. 52. P. 96–102. https://doi.org/10.1046/j.1365-3083.2000.00744.x
  24. Tamburini B., Badami G.D., Azgomi M.S., Dieli F., La Manna M.P., Caccamo N. // Tuberculosis (Edinb). 2021. V. 130. P. 102–109. https://doi.org/10.1016/j.tube.2021.102109
  25. Shiratsuchi H., Okuda Y., Tsuyuguchi I. // Infect. Immun. 1987. V. 55. P. 2126–2131. https://doi.org/10.1128/iai.55.9.2126-2131
  26. McDyer J.F., Hackley M.N., Walsh T.E., Cook J.L., Seder R.A. // J. Immunol. 1997. V. 158. P. 492–500.
  27. McDyer J.F., Li Z., John S., Yu X., Wu C.Y., Ragheb J.A. // J. Immunol. 2002. V. 169. P. 2736–2746. https://doi.org/10.4049/jimmunol.169.5.2736
  28. Bermudez L.E., Stevens P., Kolonoski P., Wu M., Young L.S. // J. Immunol. 1989. V. 143. P. 2996–3000.
  29. Denis M. // Cell. Immunol. 1991. V. 132. P. 150–157. https://doi.org/10.1016/0008-8749(91)90014-3
  30. Suárez-Méndez R., García-García I., FernándezOlivera N., Valdés-Quintana M., Milanés-Virelles M.T., Carbonell D., Machado-Molina D., ValenzuelaSilva C.M., López-Saura P.A. // BMC Infect. Dis. 2004. V. 4. P. 44. https://doi.org/10.1186/1471-2334-4-44
  31. Giosue S., Casarini M., Ameglio F., Zangrilli P., Palla M., Altieri A.M., Bisetti A. // Eur. Cytokine Netw. 2000. V. 11. P. 99–104.
  32. Kobayashi K., Kasama T. // Nihon Hansenbyo Gakkai Zasshi. 2000. V. 69. P. 77–82. https://doi.org/10.5025/hansen.69.77
  33. Greinert U., Ernst M., Schlaak M., Entzian P. // Eur. Respir. J. 2001. V. 17. P. 1049–1051. https://doi.org/10.1183/09031936.01.17510490
  34. Phyu S., Tadesse A., Mustafa T., Tadesse S., Jonsson R., Bjune G. // Scand. J. Immunol. 2000. V. 51. P. 147–154. https://doi.org/10.1046/j.1365-3083.2000.00662.x
  35. Beltan E., Horgen L., Rastogi N. // Microb. Pathog. 2000. V. 28. P. 313–318. https://doi.org/10.1006/mpat.1999.0345
  36. Ragno S., Romano M., Howell S., Pappin D.J., Jenner P.J., Colston M.J. // Immunol. 2001. V. 104. P. 99–108. https://doi.org/10.1046/j.0019-2805.2001.01274.x
  37. Zolotarev Y.A., Dadayan A.K., Bocharov E.V., Borisov Y.A., Vaskovsky B.V., Dorokhova E.M., Myasoedov N.F. // Amino Acids. 2003. V. 24. P. 325–333. https://doi.org/10.1007/s00726-002-0404-7
  38. Sadovnikov V.B., Navolotskaya E.V. // J. Pept. Sci. 2014. V. 20. P. 212–215. https://doi.org/10.1002/psc.2603
  39. Sadovnikov V.B., Zinchenko D.V., Navolotskaya E.V. // Russ. J. Bioorg. Chem. 2016. V. 42. P. 269–271. https://doi.org/10.1134/S1068162016030122
  40. Dal Farra C., Zsurger N., Vincent J.-P., Cupo A. // Peptides. 2000. V. 21. P. 577–587. https://doi.org/10.1016/s0196-9781(00)00182-0
  41. Lowry O.H., Rosebbrough N.J., Farr O.L., Randal R.J. // J. Biol. Chem. 1951. V. 193. P. 265–275.
  42. Pennock B.E. // Anal. Biochem. 1973. V. 56. P. 306– 309. https://doi.org/10.1016/0003-2697(73)90195-4
  43. Cheng Y.C., Prusoff W. // Biochem. Pharmacol. 1973. V. 22. P. 3099–3108. https://doi.org/10.1016/0006-2952(73)90196-2

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. 1. Dependence of the total (1), specific (2), and non-specific (3) binding of the [3H]LACKE peptide to the membranes of mouse peritoneal macrophages (a) and splenocytes (b) on incubation time. The amount of specific binding of the labeled peptide was determined as the difference between its general and non-specific binding.

Baixar (212KB)
3. Fig. 2. Analysis in Scatchard coordinates of the specific binding of the [3H]LKEKK peptide to the plasma membranes of peritoneal macrophages (1) and splenocytes (2) of intact mice (a) and mice infected with M. bovis-bovinus 8 (b). B and F are the molar concentrations of bound and free labeled peptide [3H]LKEKK, respectively.

Baixar (154KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».