Synthesis, Structure, and Electron Density Distribution in Crystals of K2(L-Trp)2(H2O) (HTrp = Tryptophane)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The first salt of alkaline metal and L-tryptophane, K2(L-Trp)2(H2O) (I), is synthesized by the reaction of L-tryptophane (HTrp) with potassium hydroxide in an aqueous-alcohol solution. Compound I is characterized by IR and 1H NMR spectroscopy and X-ray diffraction (XRD) (CIF file CCDC no. 2184367). Compound I is found to have a layered structure due to the presence of the bridging water molecule and chelate-bridging anions. The quantum chemical calculations of the crystal structure (PBE, plane-wave basis set, 800 eV) is used to evaluate the strength of interactions of the potassium ion with the L-tryptophanate anion (depending on the coordination type) and the influence of the anion conformation on the strength of coordination, hydrophobic, and hydrophilic interactions.

About the authors

N. A. Bondareva

Samara National Research University, Samara, Russia

Email: vologzhanina@mail.ru
Россия, Самара

P. P. Purygin

Samara National Research University, Samara, Russia

Email: vologzhanina@mail.ru
Россия, Самара

Yu. P. Zarubin

Samara National Research University, Samara, Russia

Email: vologzhanina@mail.ru
Россия, Самара

P. V. Dorovatovskii

National Research Center Kurchatov Institute, Moscow, Russia

Email: vologzhanina@mail.ru
Россия, Москва

A. A. Korlyukov

Pirogov Russian National Research Medical University, Moscow, Russia; Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia

Email: vologzhanina@mail.ru
Россия, Москва; Россия, Москва

A. V. Vologzhanina

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia

Author for correspondence.
Email: vologzhanina@mail.ru
Россия, Москва

References

  1. Soldevila-Barreda J.J., Metzler-Nolte N. // Chem. Rev. 2019. V. 119. № 2. P. 829. https://doi.org/10.1021/acs.chemrev.8b00493
  2. Saboury A.A. // J. Iran. Chem. Soc. 2006. V. 3. № 1. P. 1. https://doi.org/10.1007/BF03245784
  3. Poursharifi M., Wlodarczyk M.T., Mieszawska A.J. // Inorganics. 2019. V. 7. № 1. P. 2. https://doi.org/10.3390/inorganics7010002
  4. Palermo G., Spinello A., Saha A. et al. // Expert Opin. Drug Discov. 2021. V. 16. № 5. P. 497. https://doi.org/10.1080/17460441.2021.1851188
  5. Vidossich P., Magistrato A. // Biomolecules. 2014. V. 4. № 3. P. 616. https://doi.org/10.3390/biom4030616
  6. Palermo G., Magistrato A., Riedel T. et al. // ChemMedChem. 2016. V. 11. № 12. P. 1199. https://doi.org/10.1002/cmdc.201500478
  7. Dey D., Basu S. // J. Lumin. 2011. V. 131. № 4. P. 732. https://doi.org/10.1016/j.jlumin.2010.11.027
  8. Mosae Selvakumar P., Suresh E., Subramanian P.S. // Polyhedron. 2009. V. 28. № 2. P. 245. https://doi.org/10.1016/j.poly.2008.10.072
  9. Maclaren J.K., Janiak C. // Inorg. Chim. Acta. 2012. V. 389. P. 183. https://doi.org/10.1016/j.ica.2012.03.010
  10. Wang J., Xu X.-Y., Ma W.-X. et al. // Jiegou Huaxue. 2008. V. 27. P. 153.
  11. Wang J., Xu X., Ma W. et al. // Acta Crystallogr. E. 2007. V. 63. № 11. P. m2867. https://doi.org/10.1107/S1600536807053421
  12. Xie Y., Wu H.-H., Yong G.-P. et al. // Acta Crystallogr. E. 2006. V. 62. № 9. P. m2089. https://doi.org/10.1107/S1600536806030364
  13. Mendiratta S., Usman M., Luo T.-T. et al. // Cryst. Growth Des. 2014. V. 14. № 4. P. 1572. https://doi.org/10.1021/cg401472k
  14. Xiao D.-R., Zhang G.-J., Liu J.-L. et al. // Dalton Trans. 2011. V. 40. № 21. P. 5680. https://doi.org/10.1039/C1DT10262A
  15. Mendiratta S., Tseng T.-W., Luo T.-T. et al. // Cryst. Growth Des. 2018. V. 18. № 5. P. 2672. https://doi.org/10.1021/acs.cgd.8b00012
  16. Patra A.K., Bhowmick T., Ramakumar S. et al. // Dalton Trans. 2008. № 48. P. 6966. https://doi.org/10.1039/B802948B
  17. Şenel P., İnci D., Aydın R. et al. // Appl. Organomet. Chem. 2019. V. 33. № 10. P. E5122. https://doi.org/10.1002/aoc.5122
  18. Kumita H., Kato T., Jitsukawa K. et al. // Inorg. Chem. 2001. V. 40. № 16. P. 3936. https://doi.org/10.1021/ic000990p
  19. Lazarenko V.A., Dorovatovskii P.V., Zubavichus Y.V. et al. // Crystals. 2017. V. 7. № 11. P. 325. https://doi.org/10.3390/cryst7110325
  20. Svetogorov R.D., Dorovatovskii P.V., Lazarenko V.A. // Cryst. Res. Technol. 2020. V. 55. № 5. P. 1900184. https://doi.org/10.1002/crat.201900184
  21. Kabsch W. // Acta Crystallogr. D. 2010. V. 66. № 2. P. 125. https://doi.org/10.1107/S0907444909047337
  22. Evans P. // Acta Crystallogr. D. 2006. V. 62. № 1. P. 72. https://doi.org/10.1107/S0907444905036693
  23. Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053273314026370
  24. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053229614024218
  25. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. A-ppl. Crystallogr. 2009. V. 42. № 2. P. 339. https://doi.org/10.1107/S0021889808042726
  26. Peresypkina E.V., Blatov V.A. // Acta Crystallogr. B. 2000. V. 56. № 3. P. 501. https://doi.org/10.1107/S0108768199016675
  27. Peresypkina E.V., Blatov V.A. // Acta Crystallogr. B. 2000. V. 56. № 6. P. 1035. https://doi.org/10.1107/S0108768100011824
  28. Blatov V.A., Shevchenko A.P., Proserpio D.M. // Cryst. Growth Des. 2014. V. 14. № 7. P. 3576. https://doi.org/10.1021/cg500498k
  29. Kresse G., Hafner J. // Phys. Rev. B. 1993. V. 47. № 1. P. 558. https://doi.org/10.1103/PhysRevB.47.558
  30. Kresse G., Hafner J. // Phys. Rev. B. 1994. V. 49. № 20. P. 14251. https://doi.org/10.1103/PhysRevB.49.14251
  31. Kresse G., Furthmüller J. // Phys. Rev. B. 1996. V. 54. № 16. P. 11169. https://doi.org/10.1103/PhysRevB.54.11169
  32. Kresse G., Furthmüller J. // Comput. Mater. Sci. 1996. V. 6. № 1. P. 15. https://doi.org/10.1016/0927-0256(96)00008-0
  33. Kresse G., Joubert D. // Phys. Rev. B. 1999. V. 59. № 3. P. 1758. https://doi.org/10.1103/PhysRevB.59.1758
  34. Gonze X., Beuken J.-M., Caracas R. et al. // Comput. Mater. Sci. 2002. V. 25. № 3. P. 478. https://doi.org/10.1016/S0927-0256(02)00325-7
  35. Tang W., Sanville E., Henkelman G. // J. Phys. Condens. Matter. 2009. V. 21. № 8. P. 084204. https://doi.org/10.1088/0953-8984/21/8/084204
  36. Bader R.F.W. // Atoms in Molecules: A Quantum Theory, Clarendon Press, 1994. 438 p. https://books.google.ru/books?id=tyVpQgAACAAJ
  37. Bader R.F.W. // Acc. Chem. Res. 1985. V. 18. № 1. P. 9. https://doi.org/10.1021/ar00109a003
  38. Korlyukov A.A., Khrustalev V.N., Vologzhanina A.V. et al. // Acta Crystallogr. B. 2011. V. 67. № 4. P. 315. https://doi.org/10.1107/S0108768111022695
  39. Vologzhanina A.V., Savchenkov A.V., Dmitrienko A.O. et al. // J. Phys. Chem. A. 2014. V. 118. № 41. P. 9745. https://doi.org/10.1021/jp507386j
  40. Вологжанина А.В., Лысенко К.А. // Изв. АН. Сер. хим. 2013. Т. 62. № 8. С. 1786 (Vologzhanina A.V., Lyssenko K.A. // Russ. Chem. Bull. 2013. V. 62. № 8. P. 1786). https://doi.org/10.1007/s11172-013-0257-0
  41. Serezhkin V.N., Serezhkina L.B., Vologzhanina A.V. // Acta Crystallogr. B. 2012. V. 68. № 3. P. 305. https://doi.org/10.1107/S0108768112014711
  42. Serezhkin V.N., Savchenkov A.V. // Cryst. Growth Des. 2015. V. 15. № 6. P. 2878. https://doi.org/10.1021/acs.cgd.5b00326
  43. Serezhkin V.N., Savchenkov A.V. // Cryst. Growth Des. 2020. V. 20. № 3. P. 1997. https://doi.org/10.1021/acs.cgd.9b01645
  44. Serezhkin V.N., Savchenkov A.V. // CrystEngComm. 2021. V. 23. № 3. P. 562. https://doi.org/10.1039/D0CE01535K
  45. Vologzhanina A.V. // Crystals. 2019. V. 9. № 9. P. 478. https://doi.org/10.3390/cryst9090478
  46. Зорина-Тихонова Е.Н., Чистяков А.С., Кискин М.А. и др. // Коорд. химия. 2021. Т. 47. № 6. С. 373 (Zorina-Tikhonova E.N., Chistyakov A.S., Kiskin M.A. et al. // Russ. J. Coord. Chem. 2021. V. 47. № 6. P. 409). https://doi.org/10.1134/S1070328421060099
  47. Karnoukhova V.A., Baranov V.V., Vologzhanina A.V. et al. // CrystEngComm. 2021. V. 23. № 24. P. 4312. https://doi.org/10.1039/D1CE00434D
  48. Vologzhanina A.V., Ushakov I.E., Korlyukov A.A. // Int. J. Mol. Sci. 2020. V. 21. № 23. P. 8970. https://doi.org/10.3390/ijms21238970
  49. Espinosa E., Molins E., Lecomte C. // Chem. Phys. Lett. 1998. V. 285. № 3. P. 170. https://doi.org/10.1016/S0009-2614(98)00036-0

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (153KB)
3.

Download (550KB)
4.

Download (58KB)
5.

Download (573KB)
6.

Download (166KB)
7.

Download (1002KB)

Copyright (c) 2023 Н.А. Бондарева, П.П. Пурыгин, Ю.П. Зарубин, П.В. Дороватовский, А.А. Корлюков, А.В. Вологжанина

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».