Тетраядерный макроциклический комплекс ртути(II) состава [Hg4{S2CN(CH3)2}4Cl4]: получение, молекулярная и супрамолекулярная структура, термическое поведение

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Тетраядерный дитиокарбаматно-хлоридный комплекс ртути(II) состава [Hg4(S2CNMe2)4Cl4] (I), молекула которого включает центросимметричный 16-членный металлоцикл [Hg4S8C4], получен взаимодействием растворов HgCl2 и диметилдитиокарбамата (Me2Dtc) натрия. Кристаллическая, молекулярная и супрамолекулярная структура I установлена прямым методом РСА (CCDC № 2364847). Неэквивалентные дитиокарбаматные лиганды комплекса I с μ2-мостиковой структурной функцией попарно связывают соседние атомы ртути, формируя таким образом тетраядерную макроциклическую молекулу. При этом внутримолекулярные вторичные связи Hg···S и Hg···Cl обеспечивают структурную стабилизацию пространственной конформации макрометаллоцикла. Супрамолекулярная самоорганизация комплекса осуществляется при участии относительно слабых, парных вторичных взаимодействий S···Cl и Hg···Cl, которые объединяют тетраядерные молекулы I в 2D-псевдополимерные слои, тогда как множественные неклассические водородные связи С–Н···Cl и С–Н···S связывают эти слои в 3D-каркас. Использование метода синхронного термического анализа позволило установить, что термическое разложение I сопровождается образованием HgS и высвобождением HgCl2.

Полный текст

Доступ закрыт

Об авторах

О. В. Лосева

Институт геологии и природопользования ДВО РАН

Email: alexander.v.ivanov@chemist.com
Россия, Благовещенск

Т. А. Родина

Амурский государственный университет

Email: alexander.v.ivanov@chemist.com
Россия, Благовещенск

А. И. Смоленцев

Институт неорганической химии им. А.В. Николаева СО РАН

Email: alexander.v.ivanov@chemist.com
Россия, Новосибирск

С. В. Зинченко

Иркутский институт химии им. А.Е. Фаворского СО РАН

Email: alexander.v.ivanov@chemist.com
Россия, Иркутск

А. В. Иванов

Институт геологии и природопользования ДВО РАН

Автор, ответственный за переписку.
Email: alexander.v.ivanov@chemist.com
Россия, Благовещенск

Список литературы

  1. Cho M., Shin H.J., Kusumahastuti D.K.A. et al. // Inorg. Chim. Acta. 2020. V. 511. Art. 119789. https://doi.org/10.1016/j.ica.2020.119789
  2. Amani V., Alizadeh R., Alavije H.S. et al. // J. Mol. Struct. 2017. V. 1142. P. 92. https://doi.org/10.1016/j.molstruc.2017.04.034
  3. Priola E., Bonomettia E., Brunella V. et al. // Polyhedron. 2016. V. 104. P. 25. https://doi.org/10.1016/j.poly.2015.10.059
  4. Fu Y., Sun Y., Zheng Y. et al. // Sep. Purif. Technol. 2021. V. 259. Art. 118112. https://doi.org/10.1016/j.seppur.2020.118112
  5. Samiee S., Bahmaie M., Motamedi H. et al. // Polyhedron. 2020. V. 184. Art. 114567. https://doi.org/10.1016/j.poly.2020.114567
  6. Sabounchei S.J., Shahriary P., Rudbari H.A., Chehregani A. // J. Inorg. Organomet. Polym. 2015. V. 25. № 5. P. 1032. https://doi.org/10.1007/s10904-015-0206-5
  7. Cox M.J., Tiekink E.R.T. // Z. Kristallogr. 1999. V. 214. № 9. P. 571. https://doi.org/10.1524/zkri.1999.214.9.571
  8. Jotani M.M., Tan Y.S., Tiekink E.R.T. // Z. Kristallogr. 2016. V. 231. P. 403. https://doi.org/10.1515/zkri-2016-1943
  9. Howie R.A., Tiekink E.R.T., Wardell J.L., Wardell S.M.S.V. // J. Chem. Crystallogr. 2009. V. 39. Р. 293. https://doi.org/10.1007/s10870-008-9473-0
  10. Gurumoorthy G., Thirumaran S.S., Ciattini S. // Polyhedron. 2016. V. 118. P. 143. https://doi.org/10.1016/j.poly.2016.08.001
  11. Singh A., Singh A., Singh S. et al. // CrystEngComm. 2021. V. 23. P. 2414. https://doi.org/10.1039/d0ce01867h
  12. Rajput G., Yadav M.K., Thakur T.S. et al. // Polyhedron. 2014. V. 69. Р. 225. https://doi.org/10.1016/j.poly.2013.12.005
  13. Shotonwa I.O., Osifeko O.L., Amos S.F. et al. // J. Mol. Struct. 2024. V. 1310. Art. 138242. https://doi.org/10.1016/j.molstruc.2024.138242
  14. Khan A., Hayat F., Butler I.S. et al. // Polyhedron. 2021. V. 193. Art. 114876. https://doi.org/10.1016/j.poly.2020.114876
  15. Altaf M., Stoeckli-Evans H., Batool S.S. et al. // J. Coord. Chem. 2010. V. 63. № 7. P. 1176. https://doi.org/10.1080/00958971003759085
  16. Ajibade P.A., Onwudiwe D.C., Moloto M.J. // Polyhedron. 2011. V. 30. № 2. P. 246. https://doi.org/10.1016/j.poly.2010.10.023
  17. Dar S.H., Thirumaran S., Selvanayagam S. // Polyhedron. 2015. V. 96. P. 16. https://doi.org/10.1016/j.poly.2015.04.020
  18. Oladipo S.D., Omondi B. // Transition Met. Chem. 2020. V. 45. № 6. P. 391. https://doi.org/10.1007/s11243-020-00391-y
  19. Лосева О.В., Родина Т.А., Иванов А.В. и др. // Изв. АН. Сер. хим. 2019. № 4. С. 782 (Loseva O.V., Rodina T.A., Ivanov A.V. et al. // Russ. Chem. Bull. 2019. V. 68. № 4. P. 782). https://doi.org/10.1007/s11172-019-2486-3
  20. Book L., Chieh C. // Acta Crystallogr. B. 1980. V. 36. P. 300. https://doi.org/10.1107/s0567740880003135
  21. Angeloski A., Rawal A., Bhadbhade M. et al. // Cryst. Growth Des. 2019. V. 19. Р. 1125. https://doi.org/10.1021/acs.cgd.8b01619
  22. Loseva O.V., Rodina T.A., Shah F.U. et al. // Inorg. Chim. Acta. 2022. V. 533. Art. 120786. https://doi.org/10.1016/j.ica.2021.120786
  23. Cox M.J., Tiekink E.R.T. // Z. Kristallogr. 1997. V. 212. № 7. P. 542. https://doi.org/10.1524/zkri.1997.212.7.542
  24. Иванов А.В., Корнеева Е.В., Буквецкий Б.В. и др. // Коорд. xимия. 2008. Т. 34. № 1. С. 61 (Ivanov A.V., Korneeva E.V., Bukvetskii B.V. et al. // Russ. J. Coord. Chem. 2008. V. 34. № 1. P. 34). https://doi.org/
  25. Hexem J.G., Frey M.H., Opella S.J. // J. Chem. Phys. 1982. V. 77. № 8. P. 3847. https://doi.org/10.1063/1.444338
  26. Harris R.K., Jonsen P., Packer K.J. // Magn. Reson. Chem. 1985. V. 23. № 7. P. 565. https://doi.org/10.1002/mrc.1260230716
  27. APEX2 (version 1.08), SAINT (version 7.03), SADABS (version 2.11), SHELXTL (version 6.12). Madison (WI, USA): Bruker AXS Inc., 2004.
  28. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053229614024218
  29. Pines A., Gibby M.G., Waugh J.S. // J. Chem. Phys. 1972. V. 56. № 4. P. 1776. https://doi.org/10.1063/1.1677439
  30. Earl W.L., VanderHart D.L. // J. Magn. Reson. 1982. V. 48. № 1. P. 35. https://doi.org/10.1016/0022-2364(82)90236-0
  31. Morcombe C.R., Zilm K.W. // J. Magn. Reson. 2003. V. 162. № 2. P. 479. https://doi.org/10.1016/S1090-7807(03)00082-X
  32. Бырько В.М. Дитиокарбаматы. М.: Наука, 1984. 341 с.
  33. Беллами Л. Инфракрасные спектры сложных молекул. М.: Изд-во иностранной литературы, 1963. 590 с.
  34. Fabretti A.C., Forghieri F., Giusti A. et al. // Spectrochim. Acta. A. 1984. V. 40. Р. 343. https://doi.org/10.1016/0584-8539(84)80059-8
  35. Yin H., Li F., Wang D. // J. Coord. Chem. 2007. V. 60. № 11. P. 1133. https://doi.org/10.1080/00958970601008846
  36. Накамото К. Инфракрасные спектры неорганических и координационных соединений. М.: Мир, 1991. 536 с.
  37. Thomas I.D., Kocher K.R., Viehweg J.A. et al. // Acta Crystallogr. E. 2023. V. 79. № 10. Р. 952. https://doi.org/10.1107/S205698902300823X
  38. Bondi A. // J. Phys. Chem. 1964. V. 68. № 3. P. 441. https://doi.org/10.1021/j100785a001
  39. Prasad R., Yadav R., Trivedi M. et al. // J. Mol. Struct. 2016. V. 1103. P. 265. http://dx.doi.org/10.1016/j.molstruc.2015.10.001
  40. Yang L., Powel D.R., Houser R.P. // Dalton Trans. 2007. V. 9. P. 955. https://doi.org/10.1039/b617136b
  41. Addison A.W., Rao T.N., Reedijk J. et al. // Dalton Trans. 1984. V. 7. P. 1349. https://doi.org/10.1039/DT9840001349
  42. Wang W., Ji B., Zhang Y. // J. Phys. Chem. A. 2009. V. 113. № 28. P. 8132. https://doi.org/10.1021/jp904128b
  43. Scilabra P., Terraneo G., Resnati G. // Acc. Chem. Res. 2019. V. 52. N 5. P. 1313. https://doi.org/10.1021/acs.accounts.9b00037
  44. Бахтиярова Ю.В., Аксунова А.Ф., Галкина И.В. и др. // Изв. АН. Сер. хим. 2016. № 5. С. 1313.
  45. Лосева О.В., Родина Т.А., Герасименко А.В., Иванов А.В. // Коорд. химия. 2023. Т. 49. № 1. С. 13 (Loseva O.V., Rodina T.A., Gerasimenko A.V., Ivanov A.V. // Russ. J. Coord. Chem. 2023. V. 49. № 1. P. 10). https://doi.org/10.1134/S1070328422700233
  46. Лидин Р.А., Андреева Л.Л., Молочко В.А. Справочник по неорганической химии. М.: Химия, 1987. 319 с.
  47. Loseva O.V., Rodina T.A., Smolentsev A.I., Ivanov A.V. // Polyhedron. 2017. V. 134. P. 238. https://doi.org/10.1016/j.poly.2017.06.021
  48. Leckey J.H., Nulf L.E. Thermal decomposition of mercuric sulfide, Y/DZ-1124 (1994): Oak Ridge Y-12 Plant (TN, USА). https://doi.org/10.2172/41313

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Тетраядерная макроциклическая молекула [Hg4{S2CN(CH3)2}4Cl4]. Эллипсоиды 50% вероятности.

Скачать (259KB)
3. Рис. 2. Пространственная конфигурация 16-членного металлоцикла [Hg4S8C4] в тетраядерной молекуле I.

Скачать (83KB)
4. Рис. 3. Фрагмент 2D-псевдополимерного слоя в структуре I. Вторичные связи S···Cl и Hg···Cl показаны пунктиром. Алкильные заместители не приведены. Симметрические преобразования: a 1 – x, 1 – y, 1 – z; b –½ + x, ½ – y, –½ + z.

Скачать (288KB)
5. Рис. 4. Водородные связи в супрамолекулярном псевдополимерном 3D-каркасе I.

Скачать (242KB)
6. Рис. 5. Кривые ТГ (a) и ДСК (б) комплекса I.

Скачать (158KB)
7. Рис. 6. Кривые ТГ (a) и ДСК (б) моноядерного комплекса ртути(II) [Hg{S2CN(CH3)2}2].

Скачать (167KB)
8. Дополнительные материалы
Скачать (309KB)

© Российская академия наук, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».