Layered Coordination Polymers Based on the Cluster Complexes [Re6Q8(CN)6]4– (Q = S or Se) and Dimeric Cations {(Ag(Dppe))2(μ-Dppe)}2+

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The reactions of salts of cluster anions [Re6Q8(CN)6]4– with the [Ag(CN)2] dicyanoargentate anion in the presence of 1,2-bis(diphenylphosphino)ethane are studied. Two new coordination polymers, [{(Ag(Dppe))2 (µ-Dppe)}2{Re6S8(CN)6}]⋅H2O (I) and [{(Ag(Dppe))2(µ-Dppe)}2{Re6Se8(CN)6}]0,85[{(Ag(Dppe))(Ag(DppeSe))(µ-Dppe)}2{Re6Se8(CN)6}]0,15 (II), are prepared by the solvothermal synthesis. The XRD study of single crystals of the compounds (CIF files CCDC nos. 2341356 (I) and 2341355 (II)) shows their layered structures. The XRD study of crystalline powders of the compounds shows that the synthesis of compound II leads to the formation of two crystalline phases, one of which is isostructural to compound I. The luminescence parameters of the solid-state compounds (quantum yields, emission lifetimes) resemble the parameters of other coordination polymers based on the [Re6Q8(CN)6]4– ions.

Толық мәтін

Рұқсат жабық

Авторлар туралы

Yu. Litvinova

Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of the Russian Academy of Sciences

Email: yuri@niic.nsc.ru
Ресей, Novosibirsk

Ya. Gaifulin

Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of the Russian Academy of Sciences

Email: yuri@niic.nsc.ru
Ресей, Novosibirsk

T. Sukhikh

Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of the Russian Academy of Sciences

Email: yuri@niic.nsc.ru
Ресей, Novosibirsk

K. Brylev

Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of the Russian Academy of Sciences

Email: yuri@niic.nsc.ru
Ресей, Novosibirsk

Yu. Mironov

Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of the Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: yuri@niic.nsc.ru
Ресей, Novosibirsk

Әдебиет тізімі

  1. Sheldon J.C. // J. Chemi. Soc. (Resumed). 1962. P. 410.
  2. McCarley R.E. // Brown T.M., Inorg. Chem. 1964. Vol. 3. № 9. P. 1232.
  3. Kuhn P.J., McCarley R.E. // Inorg. Chem. 1965. Vol. 4. № 10. P. 1482.
  4. Spangenberg M. Bronger W. //Angew. Chem. Int. Ed. 1978. Vol. 17. № 5. P. 368.
  5. Robin M., Dumait N., Amela-Cortes M., et al. // Chem. Eur. J. 2018. Vol. 24. № 19. P. 4825.
  6. Sokolov M.N., Brylev K.A., Abramov P.A., et al. // Eur. J. Inorg. Chem. 2017. Vol. 2017. № 35. P. 4131.
  7. Muravieva V.K., Gayfulin Y.M., Ryzhikov M.R., et al. // Dalton Trans. 2018. Vol. 47. № 10. P. 3366.
  8. Vorotnikova N.A., Vorotnikov Y.A., Shestopalov M.A. // Coord. Chem. Rev. 2024. Vol. 500. №, P. 215543.
  9. Kirakci K., Shestopalov M.A., Lang K. // Coord. Chem. Rev. 2023. Vol. 481. P. 215048.
  10. Nguyen N.T.K., Lebastard C., Wilmet M., et al. // Sci.Technol. Adv. Mater. 2022. Vol. 23. № 1. P. 547.
  11. Yoshimura T., Ishizaka S., Sasaki Y., et al. // Chem. Lett. 1999. Vol. 28. № 10. P. 1121.
  12. Ларина Т.В., Икорский В.Н., Васенин Н.Т. и др. // Коорд. химия. 2002. Т. 28. № 8. С. 591.
  13. Litvinova Y.M., Gayfulin Y.M., Kovalenko K.A., et al. // Inorg. Chem. 2018. Vol. 57. № 4. P. 2072.
  14. Litvinova Y.M., Gayfulin Y.M., Van Leusen J., et al. // Inorg. Chem. Front. 2019. Vol. 6. № 6. P. 1518.
  15. Ulantikov A.A., Gayfulin Y.M., Sukhikh T.S., et al. // J. Struct. Chem. Engl. Tr. 2021. Vol. 62. № 7. P. 1009.
  16. Naumov N.G., Virovets A.V., Sokolov M.N., et al. // Angew. Chem. Int. Ed. 1998. Vol. 37. № 13-14. P. 1943.
  17. Naumov N.G., Virovets A.V., Artemkina S.B., et al. // J. Solid State Chem. 2004. Vol. 177. № 6. P. 1896.
  18. Artemkina S.B., Naumov N.G., Virovets A.V., et al. // Inorg. Chem. Commun. 2001. Vol. 4. № 8. P. 423.
  19. Niu G.-H., Wentz H.C., Zheng S.-L., Campbell. M.G. // Inorg. Chem. Commun. 2019. Vol. 101. P. 142.
  20. Medici S., Peana M., Crisponi G., et al. // Coord. Chem. Rev. 2016. Vol. 327−328. P. 349.
  21. Hamze R., Shi S., Kapper S.C., et al. // J. Am. Chem. Soc. 2019. Vol. 141. № 21. P. 8616.
  22. Kakizoe D., Nishikawa M., Degawa T., Tsubomura T. // Inorg. Chem. Front. 2016. Vol. 3. № 11. P. 1381.
  23. Romanov A.S., Jones S.T.E., Yang L., et al. // Adv. Opt. Mate. 2018. Vol. 6. № 24. P. 1801347.
  24. Lin Y.-Y., Lai S.-W., Che C.-M., et al. // Inorg. Chem. 2005. Vol. 44. № 5. P. 1511.
  25. Schmidbaur H., Schier A. // Angew. Chem. Int. Ed. 2015. Vol. 54. № 3. P. 746.
  26. Wing-Wah Yam V., Kam-Wing Lo. K., et al. // Coord. Chem. Rev. 1998. Vol. 171. P. 17.
  27. Tsukuda T., Kawase M., Dairiki A., et al. // Chem. Commun. 2010. Vol. 46. № 11. P. 1905.
  28. Chen J., Teng T., Kang L., et al. // Inorg. Chem. 2016. Vol. 55. № 19. P. 9528.
  29. Osawa M., Hashimoto M., Kawata I., Hoshino M. // Dalton Trans. 2017. Vol. 46. № 37. P. 12446.
  30. Artem’ev A.V., Shafikov M.Z., Schinabeck A., et al. // Inorg. Chem. Front. 2019. Vol. 6. № 11. P. 3168-3176.
  31. Litvinova Y.M., Gayfulin Y.M., Sukhikh T.S., et al. // Molecules. 2022. Vol. 27. № 22. P. 7684.
  32. Naumov N.G., Virovets A.V., Podberezskaya N.V., Federov V.E. // Zh. Strukt. Khim. 1997. № 5. P. 1018.
  33. Mironov Y.V., Virovets A.V., Fedorov V.E., et al. // Polyhedron. 1995. Vol. 14. № 20. P. 3171.
  34. Sheldrick G.M. et al. // Acta Crystallogr. A. 2015. Vol. 71. P. 3.
  35. Sheldrick G. et al. // Acta Crystallogr. C. 2015. Vol. 71. № 1. P. 3.
  36. Dolomanov O.V., Bourhis L.J., Gildea R.J., et al. // Appl. Crystallogr. 2009. Vol. 42. № 2. P. 339.
  37. Zhao Q., Freeman J.L., Wang J., et al. // Inorg. Chem. 2012. Vol. 51. № 4. P. 2016.
  38. Canales S., Villacampa M.D., Laguna A., Gimeno M.C. // J. Organomet. Chem. 2014. Vol. 760. P. 84.
  39. Sekar P., Ibers J.A., et al. // Inorg. Chim. Acta. 2001. Vol. 319. № 1. P. 117.
  40. Effendy, Di Nicola C., Nitiatmodjo M., et al. // Inorg. Chim. Acta. 2005. Vol. 358. № 3. P. 73547.
  41. Huahui Y., Lansun Z., Yunjie X., Qianer Z. // Chin. J. Inorg. Chem. 1992. Vol. 8. №, P. 65.
  42. Fournier E., Sicard S., Decken A., Harvey. P.D. // Inorg. Chem. 2004. Vol. 43. № 4. P. 1491.
  43. Wang Y.-F., Cui Y.-Z., Li Z.-F., et al. // Chin. J. Struct. Chem. 2017. Vol. 36. P. 812.
  44. Zhang Y.-R., Wang M.-Q., Cui Y.-Z., et al. // Chin. J. Inorg. Chem. 2015. Vol. 31. P. 2089.
  45. Wei X., Xu C., Li H., et al. // Chem. Sci. 2022. Vol. 13. № 19. P. 5531.
  46. Gao S., Li Z.-F., Liu M., et al. // Polyhedron. 2014. Vol. 83. P. 10.
  47. Harker C.S.W., Tiekink E.R.T. // J. Coord. Chem. 1990. Vol. 21. № 4. P. 287.
  48. Healy P.C., Loughrey B.T., Williams M.L. // Aust. J. Chem. 2012. Vol. 65. P. 811.
  49. Lin S., Li. Y., Cui Y.-Z., et al. // Chin. J. Inorg. Chem. 2016. Vol. 32. P. 2165.
  50. Chee C.F., Lo K.M., Ng S.W. // Acta Crystallogr. E. 2003. Vol. 59. № 5. P. m273.
  51. Teo Y.Y., Lo. K., Ng S. // Acta Crystallogr. E. 2008. Vol. 64. P. m819.
  52. Teo Y.Y., Lo K., Ng. S. // Acta Crystallogr. E. 2007. Vol. 63. №, P. M1365-M1367.
  53. Shafaei-Fallah M., Anson C.E., Fenske D., Rothenberger A. // Dalton Trans. 2005. Vol., № 13. P. 2300.
  54. Kühnert J., Hahn H., Rüffer T., et al. // J. Organomet. Chem. 2013. Vol. 725. P. 60.
  55. Li L.-L., Ren Z.-G., Wang J., et al. // J. Mol. Struct. 2008. Vol. 886. № 1. P. 121.
  56. Wang X.-J., Langetepe T., Fenske D., Kang. B.-S. // Z. Anorg. Allg. Chem. 2002. Vol. 628. № 5. P. 1158.
  57. Effendy, di Nicola C., Pettinari C., Pizzabiocca A., et al. // Inorg. Chim. Acta. 2006. Vol. 359. № 1. P. 64.
  58. Teo P., Koh L.L., Hor T.S.A. // Chem. Commun. 2007. Vol., № 41. P. 4221.
  59. Deng L.-R., Wang X.-J., Xiao W., et al. // Chem. Res. Chin. Univ. 2000. № 4. P. 375.
  60. Aslanidis P., Cox P.J., Divanidis S., Karagiannidis P. // Inorg. Chim. Acta. 2004. Vol. 357. № 9. P. 2677.
  61. Jin Q.-H., Yuan Y., Yang Y.-P., et al. // Polyhedron. 2015. Vol. 101. P. 56.
  62. Crespo O., Gimeno M.C., Laguna A., et al. // Dalton Trans. 2014. Vol. 43. № 32. P. 12214.
  63. Fenske D., Rothenberger A., Shafaei Fallah M. // Eur. J. Inorg. Chem. 2005. Vol. 2005. № 1. P. 59.
  64. Zhang L., Lü X.-Q., Zhang Q., et al. // Trans. Met. Chem. 2005. Vol. 30. № 1. P. 76.
  65. Dennehy M., Quinzani O.V., Mandolesi S.D., Burrow R.A. // J. Mol. Struct. 2011. Vol. 998. № 1. P. 119.
  66. Yang X., Isaac I., Persau C., et al. // Inorg. Chim. Acta. 2014. Vol. 421. P. 233.
  67. Mingsheng H., Peng Z., Ying Z., et al. // Acta Phys. Chim. Sin. 1991. Vol. 7. P. 694.
  68. Shawkataly O.B., Sani N.F.A., Rosli M.M., Razali M.R. // Z. Anorg. Allg. Chem. 2016. Vol. 642. № 5. P. 419.
  69. Gray T.G., Rudzinski C.M., Meyer E.E., et al. // J. Am. Chem. Soc. 2003. Vol. 125. № 16. P. 4755.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Fragment of the structure of compound I with numbering of symmetrically independent atoms (thermal ellipsoids of 75% probability are given, hydrogen atoms are not shown)

Жүктеу (365KB)
3. Fig. 2. Coordination environment of Ag(1), Ag(2), Ag(4) and Ag(5) atoms

Жүктеу (99KB)
4. Fig. 3. Structure of the dimeric fragment [{Ag(Dppe)}2µ-Dppe]2+ in compound I. Hydrogen atoms as well as phenyl rings of the bridging molecule Dppe are not shown

Жүктеу (179KB)
5. Fig. 4. Fragment of the layered structure of compound I. S atoms, Dppe phenyl ring molecules and H2O solvate molecules are not shown

Жүктеу (334KB)
6. Fig. 5. Independent fragment of the structure of compound II with numbering of heavy symmetrically independent atoms showing the ligands Dppe (a) and DppeSe (b) coordinated to the disordered Ag(2) (a) or Ag(2B) (b) atom, respectively. Thermal ellipsoids of 75% probability are given. Hydrogen atoms are not shown

Жүктеу (886KB)
7. Fig. 6. Coordination environment of Ag(1), Ag(2A) and Ag(2B) atoms in compound II

Жүктеу (117KB)
8. Fig. 7. Structure of the dimeric fragment {(Ag(Dppe))2(µ-Dppe)}2+ in compound II. Hydrogen atoms are not shown

Жүктеу (197KB)
9. Fig. 8. Fragment of the layered structure of compound II. Se atoms, phenyl rings of Dppe molecules and hydrogen atoms are not shown

Жүктеу (308KB)
10. Fig. 9. Experimental powder diffractogram of compound I in a polycrystalline sample (bottom) in comparison with the calculated one based on the structure of a single crystal (top)

Жүктеу (62KB)
11. Fig. 10. Experimental powder diffractogram of compound II in a polycrystalline sample (bottom) in comparison with the calculated structures of single crystals of compounds I (top, solid line) and II (top, dotted line)

Жүктеу (68KB)
12. Fig. 11. Photoluminescence spectra of compounds I and II

Жүктеу (80KB)

© Российская академия наук, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».