Complexes of Hexacoordinated Ni(II) Based on Diacetyl bis-hetarylhydrazones: Structures and Magnetic Properties

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Mononuclear nickel complexes [NiL1(NCS)2] ⋅ 2DMSO (I), [NiL1(NCS)2] ⋅ DMF (II), and [NiL2(NCS)2] ⋅ 0,5CH3OH ⋅ 1,5H2O (III) with the distorted octahedral coordination node, where L1 and L2 are the tetradentate ligand systems derived from the products of the condensation of diacetyl with 2-hydrazinoquinoline and 2-hydrazino-4,6-dimethylpyrimidine, respectively, are synthesized. The structures of the compounds are determined by IR pectroscopy and XRD (CIF files ССDС nos. 2219793 (I), 2142035 (II), and 2219794 (III)). The quantum chemical modeling of the axial parameter of magnetic anisotropy in the zero field (D) is performed for the synthesized compounds in the framework of the SA-CASSCF+NEVPT2 method. The complexes are shown to be characterized by three-axis magnetic anisotropy close to the light magnetization plane with positive D. The axial parameter of magnetic anisotropy (Dexp = 8.79 cm–1) determined by the approximation of the magnetometry data on complex [NiL2(NCS)2] ⋅ 0,5CH3OH ⋅ 1,5H2O is consistent with the calculated value (Dcalc = 11.5 cm–1).

Texto integral

Acesso é fechado

Sobre autores

M. Melikhov

Southern Federal University

Email: yptupolova@sfedu.ru
Rússia, Rostov-on-Don

D. Korchagin

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Autor responsável pela correspondência
Email: korden@icp.ac.ru
Rússia, Chernogolovka, Moscow oblast

Yu. Tupolova

Southern Federal University

Email: yptupolova@sfedu.ru
Rússia, Rostov-on-Don

L. Popov

Southern Federal University

Email: yptupolova@sfedu.ru
Rússia, Rostov-on-Don

V. Chetverikova

Southern Federal University

Email: yptupolova@sfedu.ru
Rússia, Rostov-on-Don

V. Tkachev

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: korden@icp.ac.ru
Rússia, Chernogolovka, Moscow oblast

A. Utenyshev

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: korden@icp.ac.ru
Rússia, Chernogolovka, Moscow oblast

N. Efimov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: korden@icp.ac.ru
Rússia, Moscow

I. Shcherbakov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: yptupolova@sfedu.ru
Rússia, Moscow

S. Aldoshin

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: yptupolova@sfedu.ru
Rússia, Chernogolovka, Moscow oblast

Bibliografia

  1. Troiani F., Affronte M. // Chem. Soc. Rev. 2011. V. 40. № 6. P. 3119.
  2. Stamp P.C., Gaita-Arino A. // J. Mater. Chem. 2009. V. 19. № 12. P. 1718.
  3. Timco G.A., Faust T.B., Tuna F. et al. // Chem. Soc. Rev. 2011. V. 40. № 6. P. 3067.
  4. Sanvito S. // Chem. Soc. Rev. 2011. V. 40. № 6. P. 3336.
  5. Novikov V.V., Nelyubina Yu.V. // Russ. Chem. Rev. 2021. vol. 90. no. 10. p. 1330.
  6. Neese F., Pantazisa D.A. // Faraday Discuss. 2011. V. 148. P. 229.
  7. Boca R. // Coord. Chem. Rev. 2004. V. 248. № 9–10. P. 757.
  8. Ganyushin D., Neese F. // J. Chem. Phys. 2006. V. 125. № 2. P. 024103.
  9. Cirera J., Ruiz E., Alvarez S. et at. // Chem. Eur. J. 2009. V. 15. № 16. P. 4078.
  10. Sarkar A., Dey S., Rajaraman G. // Chem. Eur. J. 2020. V. 26. № 62. P. 14036.
  11. Craig G. A., Murrie M. // Chem. Soc. Rev. 2015. № 44. P. 2135.
  12. Bar A.K., Pichon C., Sutter J.-P. // Coord. Chem. Rev. 2016. V. 308. P. 346.
  13. Tupolova Y.P., Lebedev V. E., Shcherbakov I.N. // New J. Chem. 2023. V. 47. № 22. P. 10484.
  14. Tupolova Y.P., Korchagin D.V., Andreeva A.S. et al. // Magnetochemistry. 2022. V. 8. № 11. P. 153.
  15. Popov L.D., Morozov A.N., Shcherbako I.N. et al. // Russ. Chem. Rev. 2009. vol. 78. no. 7. p. 643.
  16. Nikolaevskaya E.N., Druzhkov N.O., Syroeshkin M.A. et al. // Coord. Chem. Rev. 2020. V. 417. P. 213353.
  17. Tupolova Yu.P., Shcherbakov I.N., Korchagin D.V. et al. // J. Phys. Chem. C. 2020. V. 124. № 47. P. 25957.
  18. Tupolova Y.P., Lebedev V.E., Korchagin D.V. et al. // New J. Chem. 2023. V. 47. № 22. P. 10884.
  19. Tupolova Y.P., Shcherbakov I.N., Popov L.D. et al. // Dalton Trans. 2019. V. 48. 6960.
  20. Дзиомко В.М., Красавин И.А., Мирошкина Н.И. // Методы получения химический реактивов и препаратов. 1965. № 12. С. 50.
  21. Kosolapoff G.M., Roy C.H. // J. Org. Chem. 1961. V. 26. P. 1895.
  22. Tupolova Y.P., Korchagin D.V., Lebedev V.E. et al. // Russ. J. Coord. Chem. 2022. V. 48. Р. 362. https://doi.org/10.31857/S0132344X22060068
  23. CrysAlisPro. Version 1.171.38.41. Rigaku Oxford Diffraction, 2015. https://www.rigaku.com/en/products/smc/crysalis
  24. SHELXTL. Version 6.14. Madison (WI, USA): Bruker AXS, 2000.
  25. Roos B.O., Taylor P. R., Sigbahn P. E.M. // Chem. Phys. 1980. V. 48. № 2. P. 157.
  26. Per S., Anders H., Björn R., Bernard L. // Phys. Scripta. 1980. V. 21. № 3–4. P. 323.
  27. Siegbahn P.E.M., Almlöf J., Heiberg A. et al. // J. Chem. Phys. 1981. V. 74. № 4. P. 2384–2396.
  28. Angeli C., Cimiraglia R., Evangelisti S. et al. // J. Chem. Phys. 2001. V. 114. № 23. P. 10252.
  29. Angeli C., Cimiraglia R., Malrieu J.-P. // Chem. Phys. Lett. 2001. V. 350. № 3. P. 297.
  30. Angeli C., Cimiraglia R. // Theor. Chem. Acc. 2002. V. 107. № 5. P. 313.
  31. Angeli C., Cimiraglia R., Malrieu J.-P. // J. Chem. Phys. 2002. V. 117. № 20. P. 9138.
  32. Hess B.A. // Phys. Rev. A. 1986. № 33. № 6. P. 3742.
  33. Pantazis D.A., Chen X.Y., Landis C.R. et al. // J. Chem. Theory Comput. 2008. V. 4. P. 908.
  34. Schafer A., Huber C., Ahlrichs R. // J. Chem. Phys. 1994. V. 100. № 8. P. 5829.
  35. Schafer A., Horn H., Ahlrichs R. // J. Chem. Phys. 1992. V. 97. № 4. P. 2571.
  36. Weigend F., Ahlrichs R. // Phys. Chem. Chem. Phys. 2005. V. 7. № 18. P. 3297.
  37. Neese F. // J. Comput. Chem. 2003. V. 24. № 14. P. 1740.
  38. Neese F. // WIREs Comput. Mol. Sci. 2018. V. 8. № 1. Art. e1327.
  39. Atanasov M., Ganyushin D., Sivalingam K. et al. // Molecular Electronic Structures of Transition Metal Complexes II / Eds. Mingos D. M.P., Day P., Dahl J. P. Berlin, Heidelberg: Springer, 2012. P. 149.
  40. Singh S.K., Eng J., Atanasov M. et al. // Coord. Chem. Rev. 2017. V. 344. P. 2.
  41. Alvarez S., Alemany P., Casanova D. J, et al. // Coord. Chem. Rev. 2005. V. 249. P. 1693.
  42. Gomez-Coca S., Cremades E., Aliaga-Alcalde N. et al. // J. Am. Chem. Soc. 2013. V. 135. № 18. P. 7010.
  43. Gómez-Coca S., Aravena D., Morales R. et al. // Coord. Chem. Rev. 2015. V. 289–290. P. 379.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Scheme 1.

Baixar (151KB)
3. Scheme 2.

Baixar (154KB)
4. Fig. 1. Molecular structure of complex I (without DMSO molecule).

Baixar (210KB)
5. Fig. 2. Molecular structure of complex II.

Baixar (207KB)
6. Fig. 3. Molecular structure of complex III.

Baixar (270KB)
7. Fig. 4. Polyhedra of compounds I–III.

Baixar (145KB)
8. Fig. 5. Fragment of the crystal packing of complex I (without hydrogen atoms).

Baixar (153KB)
9. Fig. 6. Fragment of the crystal packing of complex II (without hydrogen atoms).

Baixar (168KB)
10. Fig. 7. Fragment of the crystal packing of complex III, the dotted lines indicate the intermolecular hydrogen bonds formed by the crystallization water molecule (a); intermolecular hydrogen bonds between the water molecule and the molecules of complex III (b).

Baixar (180KB)
11. Fig. 8. Temperature dependence of χMT for III measured at H = 0.1 T (hollow circles). Insert: magnetization versus field for I measured at T = 1.8 and 5 K. Theoretical curves (solid lines) were calculated with the parameters: E = 0.08 cm⁻¹, gX = gY = 2.20, gZ = 2.09, χТНП = 10 × 10⁻⁴ cm³ K mol⁻¹.

Baixar (190KB)
12. Fig. 9. Splitting of the d-AO of the nickel ion in complex III (calculated according to the NTPL. The coordinate axes are oriented as follows: the z axis is directed perpendicular to the plane of the molecule, the x and y axes are directed toward the nitrogen atoms).

Baixar (107KB)

Declaração de direitos autorais © Российская академия наук, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».