Высокоэффективные катализаторы дегидрирования диметиламин-борана на основе полусэндвичевых иминофосфонамидных комплексов родия

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Изучено дегидрирование диметиламин-борана (ДМАБ), катализируемое иминофосфонамидными комплексами родия(III) [Cp*RhCl{Ph2P(N–p-Tol)(NR)}] (Iа, R = p-Tol; Ib, R = Me), а также образующимися из них in situ фульвеновыми [(η4-C5Me4CH2)Rh(NPN)] (IIa, IIb) и диеновыми [(η4-C5Me5H)Rh(NPN)] (IIIa, IIIb) комплексами родия(I). Наиболее активными оказались катализаторы IIIa, IIIb, демонстрируя в толуоле при 40°С активность TOF 110 (IIIа) и 540 ч–1 (IIIb). В более полярном и координирующем ТГФ их активность значительно снижается. В то же время скорость дегидрирования ДМАБ комплексами Iа, Ib в 10–30 раз ниже, а фульвеновые комплексы IIa, IIb после активного начального периода (<20% конверсии) быстро дезактивируются. Кинетические исследования показали, что реакция имеет первый порядок по субстрату и по катализатору. Модельные ЯМР 11В эксперименты подтверждают, что реакция протекает через промежуточное образование мономера Me2N=BH2, который быстро димеризуется в (Me2N–BH2)2. На основании предварительных данных ЯМР 31Р и литературных сведений предположен механизм дегидрирования ДМАБ с образованием нестабильного гидридного интермедиата [Cp*RhH{Ph2P(N–p-Tol)(NR)}] (IVa, IVb).

Полный текст

Доступ закрыт

Об авторах

Р. И. Некрасов

Институт элементоорганических соединений им. А.Н. Несмеянова РАН

Email: nataliabelk@ineos.ac.ru
Россия, Москва

Т. А. Пеганова

Институт элементоорганических соединений им. А.Н. Несмеянова РАН

Email: nataliabelk@ineos.ac.ru
Россия, Москва

А. М. Кальсин

Институт элементоорганических соединений им. А.Н. Несмеянова РАН

Email: nataliabelk@ineos.ac.ru
Россия, Москва

Н. В. Белкова

Институт элементоорганических соединений им. А.Н. Несмеянова РАН

Автор, ответственный за переписку.
Email: nataliabelk@ineos.ac.ru
Россия, Москва

Список литературы

  1. Colebatch A.L., Weller A.S. // Chem. Eur. J. 2019. V. 25. P. 1379. https://doi.org/10.1002/chem.201804592
  2. Staubitz A., Robertson A.P.M., Manners I. // Chem. Rev. 2010. V. 110. p. 4079. https://doi.org/10.1021/cr100088b
  3. Du V.A., Jurca T., Whittell G.R., Manners I. // Dalton Trans. 2016. V. 45. P. 1055. https://doi.org/10.1039/C5DT03324A
  4. Resendiz-Lara D.A., Stubbs N.E., Arz M.I. et al. // Chem. Commun. 2017. V. 53. P. 11701.
  5. Kumar A., Daw P., Milstein D. et al. // Chem. Rev. 2022. V. 122. P. 385. https://doi.org/ 10.1021/acs.chemrev.1c00412
  6. Alig L., Fritz M., Schneider S. et al. // Chem. Rev. 2019. V. 119. P. 2681. https://doi.org/10.1021/acs.chemrev.8b00555
  7. Glüer A., Förster M., Celinski V. R. et al. // ACS Catal. 2015. V. 5. P. 7214. https://doi.org/10.1021/acscatal.5b02406
  8. Luconi L., Osipova E. S., Giambastiani G. et al. // Organometallics. 2018. V. 37. P. 3142. https://doi.org/10.1021/acs.organomet.8b00488
  9. Todisco., S., Luconi., L., Giambastiani., G et al. // Inorg. Chem. 2017. V. 56. P. 4296. https://doi.org/10.1021/acs.inorgchem.6b02673
  10. Titova. E.M., Osipova. E.S., Pavlov. A.A. et al. // ACS Catal. 2017. V. 7. P. 2325. https://doi.org/10.1021/acscatal.6b03207
  11. Sewell L.J., Huertos M.A., Dickinson M.E. et al. // Inorg. Chem. 2013. V. 52. P. 4509. https://doi.org/10.1021/ic302804d
  12. Johnson H.C., Leitao E.M., Whittell G.R. et al. // J. Am. Chem. Soc. 2014. V. 136. P. 9078. https://doi.org/10.1021/ja503335g
  13. Douglas T.M., Chaplin A.B., Weller A S. et al. // J. Am. Chem. Soc. 2009. V. 131. P. 15440. http://dx.doi.org/10.1021/ja906070r
  14. Kirkina V.A., Osipova E.S., Filippov O.A. et al. // Mendeleev Commun. 2020. V. 30. P. 276. https://doi.org/10.1016/j.mencom.2020.05.004
  15. Brodie C.N., Sotorrios L., Boyd T.M. et al. // ACS Catal. 2022, vol. 12. P. 13050. https://doi.org/10.1021/acscatal.2c03778
  16. Brodie C.N., Boyd T.M., Sotorríos L. et al. // J. Am. Chem. Soc. 2021. V. 143. P. 21010. https://doi.org/10.1021/jacs.1c10888
  17. White C., Yates A., Maitlis P.M. et al. // Inorg. Synth. 1992. V. 29. P. 228. https://doi.org/10.1002/9780470132609.ch53
  18. Nekrasov R.I., Peganova T.A., Fedyanin I.V. et al. // Inorg. Chem. 2022. V. 61. P. 16081. https://doi.org/10.1021/acs.inorgchem.2c02478
  19. Kruger C.R., Niederprum H. // Inorg. Synth. 1966. V. 8. P. 15.
  20. Pal S., Kusumoto S., Nozaki K. // Organometallics. 2018. V. 37. P. 906. https://doi.org/10.1021/acs.organomet.7b00889
  21. Sinopalnikova I.S., Peganova T.A., Belkova N.V. et al. // Eur. J. Inorg. Chem. 2018. V. 2018. P. 2285. https://doi.org/10.1002/ejic.20170134423
  22. Pal S., Iwasaki T., Nozaki K. // Dalton Trans. 2021, V. 50. P. 7938. https://doi.org/10.1039/D1DT01705E
  23. Dallanegra R., Robertson A.P.M., Chaplin A. B. et al. // Chem. Commun. 2011. V. 47. P. 3763. https://doi.org/10.1039/C0CC05460G
  24. Gulyaeva E.S., Osipova E.S., Kovalenko S.A. et al. // Chem. Sci. 2024. V. 15. P. 1409. https://doi.org/10.1039/D3SC05356C

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Схема 1. Синтез комплексов IIа, IIb и IIIa, IIIb.

Скачать (98KB)
3. Схема 2. Предполагаемая изомеризация IIIa в IVa под действием ДМАБ, сопровождаемая переносом атома водорода от Сp*H к атому Rh и выделением H2.

Скачать (124KB)
4. Рис. 1. Дегидрирование ДМАБ, катализируемое комплексами IIIa, IIIb в толуоле и ТГФ. Условия: Т = 40°С, [Rh] = 5.8 мМ, [ДМАБ] = 0.145 М, Vр-ра = 2.1 мл.

Скачать (85KB)
5. Рис. 2. Дегидрирование ДМАБ, катализируемое комплексами Ia, Ib и IIa, IIb в толуоле, в сравнении с IIIa, IIIb. Условия: Т = 40°С, [Rh] = 2.9 мМ, [ДМАБ] = 0.145 М, Vр-ра = 2.1 мл.

Скачать (105KB)
6. Рис. 3. Дегидрирование ДМАБ (0.145 М), катализируемое комплексом IIIb при 40°С в толуоле в зависимости от концентрации катализатора: кинетические кривые первого порядка (слева) и зависимость kнабл от [Rh].

Скачать (158KB)
7. Рис. 4. Кинетика дегидрирования ДМАБ (0.085 М, δВ = 13 м.д.), катализируемого комплексом IIIа (0.008 М) при 18°С в толуоле-d8. Изменения спектра ЯМР 11В смеси.

Скачать (262KB)
8. Рис. 5. Графики изменения относительных концентраций борсодержащих продуктов реакции (слева) и кинетическая кривая первого порядка с расчетом наблюдаемой константы скорости реакции (справа). Условия, как на рис. 4.

Скачать (118KB)

© Российская академия наук, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».