IMPLEMENTATION OF GEOMETRIC ALGEBRA IN COMPUTER ALGEBRA SYSTEMS

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

For describing specialized mathematical structures, it is preferable to use a special formalism rather than a general one. However, tradition often prevails in this case. For example, to describe rotations in the three-dimensional space or to describe motion in the Galilean or Minkowski spaces, vector (or tensor) formalism, rather than more specialized formalisms of Clifford algebra representations, is often used. This approach is historically justified. The application of specialized formalisms, such as spinors or quaternions, has not become a mainstream in science, but it has taken its place in solving practical and engineering problems. It should also be noted that all operations in theoretical problems are carried out precisely with symbolic data, and manipulations with multidimensional geometric objects require a large number of operations with the same objects. And it is in such problems that computer algebra is most powerful. In this paper, we want to draw attention to one of these specialized formalisms—the formalism of geometric algebra. Namely, it is proposed to consider options for the implementation of geometric algebra in the framework of the symbolic
computation paradigm.

Sobre autores

M. GEVORKYAN

Peoples’ Friendship University of Russia (RUDN University)

Email: gevorkyan-mn@rudn.ru
Moscow, Russia

A. KOROL'KOVA

Peoples’ Friendship University of Russia (RUDN University)

Email: korolkova-av@rudn.ru
Moscow, Russia

D. KULYABOV

Peoples’ Friendship University of Russia (RUDN University); Joint Institute for Nuclear Research

Email: kulyabov-ds@rudn.ru
Moscow, Russia; Dubna, Moscow oblast, Russia

A. DEMIDOVA

Peoples’ Friendship University of Russia (RUDN University)

Email: demidova-av@rudn.ru
Moscow, Russia

T. Velieva

Peoples’ Friendship University of Russia (RUDN University)

Autor responsável pela correspondência
Email: velieva-tr@rudn.ru
Moscow, Russia

Bibliografia

  1. Grassmann H.G. Die mechanik nach den principien der ausdehnungslehre // Mathematische Annalen. 1877. Bd. 12. S. 222–240.
  2. Kuipers J.B. Quaternions and rotation sequences. Princeton University Press, 1999.
  3. Clifford W.K. Applications of grassmann’s extensive algebra // American Journal of Mathematics. 1878. V. 1. № 4. P. 350–358.
  4. Казанова Г. Векторная алгебра / Под ред. М.К. Поливанова. Современная математика. М.: Мир, 1979.
  5. Hestenes D., Sobczyk G. Clifford Algebra to Geometric Calculus: A Unified Language for Mathematics and Physics. Fundamental Theories of Physics. Springer Netherlands, 1987. ISBN: 9789027725615.
  6. Delanghe R., Sommen F., Soucek V. Clifford algebra and spinor-valued functions. Mathematics and Its Applications. Kluwer Academic Publishers, 1992.
  7. Doran C., Lasenby A. Geometric Algebra for Physicists. Morgan Kaufmann Publishers, 2003. ISBN: 9780123694652.
  8. Dorst L., Fontijne D., Mann S. Geometric algebra for computer science. The Morgan Kaufmann Series in Computer Graphics. Morgan Kaufmann, 2007. ISBN: 0123694655.
  9. Vince J. Geometric algebra for computer graphics. Springer-Verlag, 2008. ISBN: 9781846289965.
  10. Lengyel E. Mathematics. Lincoln, California: Terathon Software LLC, 2016. V. 1. ISBN: 9780985811747.
  11. Kanatani K. Understanding Geometric Algebra. Taylor and Francis Group/CRC, 2015. ISBN: 9781482259513.
  12. ten Bosch M. Let’s remove quaternions from every 3d engine. URL: https://marctenbosch.com/quaternions/.
  13. Perwa C.B.U. Geometric Algebra with Applications in Engineering. Geometry and Computing. Springer-Verlag Berlin Heidelberg, 2009. ISBN: 9783540890676.
  14. Joot P. Geometric Algebra for Electrical Engineers: Multivector Electromagnetism. CreateSpace Independent Publishing Platform, 2019. ISBN: 9781987598971.
  15. Winitzki S. Linear Algebra via Exterior Products. 2020. URL: https://github.com/winitzki/linear-algebra-book.
  16. Chappell J.M., Drake S.P., Seidel C.L. et al. Geometric algebra for electrical and electronic engineers // Proceedings of the IEEE. 2014. V. 102. № 9. P. 1340–1363.
  17. Galgebra – symbolic geometric algebra/calculus package for sympy. 2022. URL: https://galgebra.readthedocs.io/en/latest/index.html.
  18. Геворкян М.Н., Демидова А.В., Велиева Т.Р. и др. Аналитико-численная реализация алгебры поливекторов на языке julia // Программирование. 2022. № 1. С. 54–64.
  19. Sympy. 2022. URL: http://www.sympy.org/ru/index.html.
  20. Кострикин А.И. Линейная алгебра. М.: МЦНМО, 2009. Т. 2. ISBN: 9785940574545.
  21. Bivector.net: Geometric algebra resources. 2022. URL: https://bivector.net/index.html.
  22. Hadfield H., Wieser E., Arsenovic A. et al. pygae/clifford. 2022.
  23. De Keninck S. ganja.js. 2020.
  24. Grassmann.jl. 2022. URL: https://github.com/chakravala/Grassmann.jl.
  25. Breuils S., Nozick V., Fuchs L. Garamon: A geometric algebra library generator // Advances in Applied Clifford Algebras. 2019. 7. V. 29. № 4. P. 69.
  26. Gunn C.G., Keninck S.D. Geometric algebra and computer graphics // ACM SIGGRAPH 2019. Courses. ACM, 2019. 7.
  27. Colapinto P. Versor: Spatial computing with conformal geometric algebra. 2011. Available at http://versor.mat.ucsb.edu. URL: http://versor.mat.ucsb.edu.
  28. Кулябов Д.С., Королькова А.В. Компьютерная алгебра на julia // Программирование. 2021. № 2. С. 44–50. 2108.12301.
  29. Gevorkyan M.N., Kulyabov D.S., Korolkova A.V. et al. Symbolic implementation of multivector algebra in julia language // Computer algebra: 4th International Conference Materials. LCC MAKS Press, 2021. 5. P. 57–60.
  30. Kulyabov D.S., Korolkova A.V., Sevastianov L.A. Complex numbers for relativistic operations. MDPI AG, 2021. 12.
  31. Зи Э. Квантовая теория поля в двух словах. Регулярная и хаотическая динамика, 2009. ISBN: 978-5-93972-770-9.
  32. Kulyabov D.S., Korolkova A.V., Gevorkyan M.N. Hyperbolic numbers as einstein numbers // Journal of Physics: Conference Series. 2020. 5. V. 1557. P. 012027.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (52KB)

Declaração de direitos autorais © М.Н. Геворкян, А.В. Королькова, Д.С. Кулябов, А.В. Демидова, Т.Р. Велиева, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».