Lower bounds for the rank of a matrix with zeros and ones outside the leading diagonal

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We have found a lower bound on the rank of a square matrix, where every entry in the leading diagonal is neither zero nor one, but every entry outside the leading diagonal is either zero or one. The rank of such a matrix is at least half the order of the matrix. Under an additional condition, the lower bound is one higher. This condition means that some auxiliary system of linear equations has no binary solution. Examples are given showing the achievability of the lower bound. This lower bound on the rank allows us to reduce the problem of finding a binary solution to a system of linear equations, where the number of linearly independent equations is sufficiently large, to a similar problem in a smaller number of variables. Restrictions on the existence of a large set of solutions are found, each of which differs from binary one by the value of one variable. In addition, we discuss the possibility of certifying the absence of a binary solution to a system of a large set of linear algebraic equations. Estimates of the running time for calculating the rank of a matrix with the SymPy computer algebra system are also given. It is shown that the matrix rank over the field of residues modulo a prime number is calculated in less time than is usually required to calculate the rank of a matrix of the same order over the field of rational numbers.

Full Text

Restricted Access

About the authors

A. V. Seliverstov

Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute)

Author for correspondence.
Email: slvstv@iitp.ru
ORCID iD: 0000-0003-4746-6396
Russian Federation, Bolshoy Karetny per. 19, build. 1, Moscow 127051

O. A. Zverkov

Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute)

Email: zverkov@iitp.ru
ORCID iD: 0000-0002-8546-364X
Russian Federation, Bolshoy Karetny per. 19, build. 1, Moscow 127051

References

  1. Alaev P.E. Finitely generated structures computable in polynomial time // Siberian Mathematical Journal. 2022. V. 63. № 5. P. 801–818. doi: 10.1134/S0037446622050019
  2. Leontiev V.K., Gordeev E.N. On the number of solutions to a system of Boolean equations // Automation and Remote Control. 2021. V. 82. no. 9. P. 1581–1596. doi: 10.1134/S000511792109006X
  3. Gordeev E.N., Leont’ev V.K. On the number of solutions to linear Diophantine equation and Frobenius problem. Computational Mathematics and Mathematical Physics. 2022. V. 62. № 9. P. 1413–1423. doi: 10.1134/S0965542522090044
  4. Pan Y., Zhang F. Solving low-density multiple subset sum problems with SVP oracle // Journal of Systems Science and Complexity. 2016. V. 29. P. 228–242. doi: 10.1007/s11424-015-3324-9
  5. Seliverstov A.V. Binary solutions to large systems of linear equations // Prikladnaya Diskretnaya Matematika. 2021. № 52. P. 5–15 (in Russian). doi: 10.17223/20710410/52/1
  6. Seliverstov A.V. Generalization of the subset sum problem and cubic forms // Computational Mathematics and Mathematical Physics. 2023. V. 63. № 1. P. 48–56. doi: 10.1134/S0965542523010116
  7. Akmal S., Chen L., Jin C., Raj M., Williams R. Improved Merlin–Arthur protocols for central problems in fine-grained complexity // Algorithmica. 2023. V. 85. P. 2395–2426. doi: 10.1007/s00453-023-01102-6
  8. Stoichev S.D., Gezek M. Unitals in projective planes of order 25 // Mathematics in Computer Science. 2023. V. 17. № 5. P. 1–19. doi: 10.1007/s11786-023-00556-9
  9. Chistov A.L. Fast parallel calculation of the rank of matrices over a field of arbitrary characteristic. In: L. Budach (eds) Fundamentals of Computation Theory. FCT 1985. Lecture Notes in Computer Science, vol. 199. Springer, Berlin, Heidelberg, 1985. P. 63–69. doi: 10.1007/BFb0028792
  10. Mulmuley K. A fast parallel algorithm to compute the rank of a matrix over an arbitrary field // Combinatorica. 1987. V. 7. № 1. P. 101–104. doi: 10.1007/BF02579205
  11. Cheung H.Y., Kwok T.C., Lau L.C. Fast matrix rank algorithms and applications // Journal of the ACM. 2013. V. 60, no. 5. Article no. 31. P. 1–25. doi: 10.1145/2528404
  12. Pereslavtseva O.N. Calculation of the characteristic polynomial of a matrix // Discrete Mathematics and Applications. 2011. V. 21. № 1. P. 109–128. doi: 10.1515/DMA.2011.008
  13. Neiger V., Pernet C. Deterministic computation of the characteristic polynomial in the time of matrix multiplication // Journal of Complexity. 2021. V. 67. № 101572. P. 1–35. doi: 10.1016/j.jco.2021.101572
  14. Birmpilis S., Labahn G., Storjohann A. A fast algorithm for computing the Smith normal form with multipliers for a nonsingular integer matrix // Journal of Symbolic Computation. 2023. V. 116. P. 146–182. doi: 10.1016/j.jsc.2022.09.002
  15. Abramov S.A., Petkovšek M., Ryabenko A.A. On ranks of matrices over noncommutative domains // Computational Mathematics and Mathematical Physics. 2023. V. 63. № 5. P. 771–778. doi: 10.1134/S0965542523050020
  16. Yuran A.Y. Newton polytopes of nondegenerate quadratic forms // Functional Analysis and Its Applications. 2022. V. 56. № 2. P. 152–158. doi: 10.1134/S0016266322020095
  17. Batkhin A.B., Bruno A.D. Real normal form of a binary polynomial at a second-order critical point // Computational Mathematics and Mathematical Physics. 2023. V. 63. № 1. P. 1–13. doi: 10.1134/S0965542523010062
  18. Seliverstov A.V. On a simple lower bound for the matrix rank. In: S.A. Abramov, A.B. Batkhin, L.A. Sevastyanov (eds.) Computer algebra: 5th International Conference Materials. Moscow, 26–28 June, 2023. Moscow: KIAM, 2023. P. 126–128.
  19. Bairamov R.E., Blinkov Yu.A., Levichev I.V., Malykh M.D., Melezhik V.S. Analytical study of cubature formulas on a sphere in computer algebra systems // Computational Mathematics and Mathematical Physics. 2023. V. 63. № 1. P. 77–85. doi: 10.1134/S0965542523010050
  20. Meurer A., Smith C.P., Paprocki M., Čertik O., Kirpichev S.B., Rocklin M., Kumar A., Ivanov S., Moore J.K., Singh S., Rathnayake T., Vig S., Granger B.E., Muller R.P., Bonazzi F., Gupta H., Vats S., Johansson F., Pedregosa F., Curry M.J., Terrel A.R., Roučka Š., Saboo A., Fernando I., Kulal S., Cimrman R., Scopatz A. SymPy: symbolic computing in Python // PeerJ Computer Science. 2017. V. 3. № e103. P. 1–27. doi: 10.7717/peerj-cs.103

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Matrix 1

Download (24KB)
3. Matrix 2

Download (24KB)
4. Matrix 3

Download (24KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».