Solving rician data analysis problems: theory and numerical modeling using computer algebra metods in Wolfram Mathematica

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This paper considers theoretical foundations and mathematical methods of data analysis under the conditions of the Rice statistical distribution. The problem involves joint estimation of the signal and noise parameters. It is shown that this estimation requires the solution of a complex system of essentially nonlinear equations with two unknown variables, which implies significant computational costs. This study is aimed at mathematical optimization of computer algebra methods for numerical solution of the problem of Rician data analysis. As a result of the optimization, the solution of the system of two nonlinear equations is reduced to the solution of one equation with one unknown variable, which significantly simplifies algorithms for the numerical solution of the problem, reduces the amount of necessary computational resources, and enables the use of advanced methods for parameter estimation in information systems with priority of real-time operation. Results of numerical experiments carried out using Wolfram Mathematica confirm the effectiveness of the developed methods for two-parameter analysis of Rician data. The data analysis methods considered in this paper are useful for solving many scientific and applied problems that involve analysis of data described by the Rice statistical model.

Full Text

Restricted Access

About the authors

T. V. Yakovleva

Federal Research Center “Computer Science and Control”, Russian Academy of Sciences

Author for correspondence.
Email: tan-ya@bk.ru
ORCID iD: 0000-0003-2401-9825
Russian Federation, ul. Vavilova 44/2, Moscow, 119333

References

  1. Rice S. O. Mathematical analysis of random noise // Bell Syst. Technological J. 1944. V. 23. P. 282.
  2. Benedict T.R., Soong T.T. The joint estimation of signal and noise from the sum envelope IEEE Transactions on Information Theory. Institute of Electrical and Electronics Engineers. 1967. V. 13. № 3. P. 447–454.
  3. Talukdar K.K., Lawing W.D. Estimation of the parameters of Rice distribution ,J. Acoust. Soc. Amer., Mar. 1991. V. 89. № 3. P. 1193–1197.
  4. Sijbers J., den Dekker A.J., Scheunders P., Van Dyck D. Maximum-Likelihood Estimation of Rician Distribution Parameters, IEEE Transactions on Medical Imaging. 1998. V. 17. № 3. P. 357–361.
  5. Yakovleva T.V. A Theory of Signal Processing at the Rice Distribution, Dorodnicyn Computing Centre, RAS, Moscow, 2015, 268 p.
  6. Deutsch R. Estimation Theory. NJ: Prentice-Hall: Englewood Cliifs, 1965.
  7. Port S.C. Theoretical Probability for Applications. New York: Wiley, 1944.
  8. Venttsel’ E.S., Teoriya veroyatnostei (Probability Theory), Moscow: Akademiya, 2005, 10th ed.
  9. Park J.H. Moments of the generalized Rayleigh distribution // Quarterly of Applied Mathematics. 1961. V. 19. № 1. P. 45–49.
  10. Abramowitz, M., Stegun, I.A. Handbook of Mathematical Functions, United States Department of Commerce, National Bureau of Standards (NBS), 1964.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. An illustration of the behavior of the probability density function characterizing the distribution of the Rice value x, formed from the initial deterministic value A under the influence of Gaussian noise.

Download (75KB)
3. Fig. 2. Illustration of the nonlinear properties of the Rice distribution: (a) – the nonlinear dependence of the mathematical expectation of the Rice value x on the Rice parameter r; (b) – the nonlinear dependence of the square of the standard deviation of the Rice signal on the dispersion of the Gaussian noise a2, forming the Rice random variable.

Download (87KB)
4. Fig. 3. Three-dimensional graphs of the likelihood function of the statistical Rice distribution, constructed in the Wolfram Mathematica system for various ratios of the values of the Rice parameters.

Download (176KB)
5. Fig. 4. The results of calculating the Rice parameters of the signal v (a) and noise a (b) in the Wolfram Mathematica system using the presented combined method.

Download (131KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».