METHOD FOR CHECKING THE REGULARITY OF A SINGULAR POINT OF A SYSTEM OF LINEAR DIFFERENTIAL EQUATIONS WITH MEROMORPHIC COEFFICIENTS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This paper proposes a program written in a symbolic computing package that allows one to check whether a singular point of a linear meromorphic system of arbitrary order is regular. The program is based on the known method for reducing this system by linear substitution to a linear differential equation with meromorphic coefficients.

About the authors

D. O. Ilyukhin

State Budgetary Educational Institution “Bauman Engineering School” № 1580

Moscow, Russia

A. V. Parusnikova

HSE University

Email: aparusnikova@hse.ru
Moscow, Russia

References

  1. Zoladek H. The monodromy group // Instytut matematyczny PAN. Basel: Birkhauser Verlag (2006).
  2. Moser J. The order of a singularity in Fuchs’ theory // Math Z. 1959. V. 72. P. 379–398.
  3. Barkatou A. A rational version of Moser’s algorithm // Proceedings of the 1995 international symposium on Symbolic and algebraic computation. April. 1995. P. 297–302.
  4. Bruno A.D. Meromorphic conductivity of a linear triangular system of ODEs, Dokl. Akad. Nauk, 2000, vol. 371, no. 5, pp. 587–590
  5. Vyugin I.V., Gontsov R.R. Additional parameters in inverse problems of monodromy, Sbornik: Mathematics, 2006, vol. 197, no. 12, pp. 1753–1773
  6. Ilyukhin D.O., Parusnikova A.V. Regularity criterion for linear systems of linear differential equations of small orders with meromorphic coefficients, Tr. Priokskoi nauchnoi konferentsii Differentsial’nye uravneniya i smezhnye voprosy matematiki (Proc. Priokskaya Sci. Conf. Differential Equations and Related Topics in Mathematics), 2019, pp. 65–73
  7. azov V. Asimptoticheskie razlozheniya reshenii obyknovennykh differentsial’nykh uravnenii (Asymptotic Expansions of Solutions of Ordinary Differential Equations), Moscow: Mir, 1968.
  8. Wolfram St. The Mathematica Book. Wolfram Media, Inc., 2003. 1488 p.
  9. Gromak V.I., Laine I., and Shimomura S. Painleve Differential Equations in the Complex Plane // De Gruyter Studies in Mathematics, vol. 28, Berlin, 2002.
  10. Lin Y., Dai D., Tibboel P. Existence and uniqueness of tronquee solutions of the third and fourth Painleve equations // Nonlinearity. 2014. Vol. 27. No. 2. P. 171–186.
  11. Parusnikova A.V., Vasilyev A.V. On the exact Gevrey order of formal Puiseux series solutions to the third Painleve equation // Journal of Dynamical and Control Systems. 2019. Vol. 25. No. 4. P. 681–690.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).