METHOD FOR CHECKING THE REGULARITY OF A SINGULAR POINT OF A SYSTEM OF LINEAR DIFFERENTIAL EQUATIONS WITH MEROMORPHIC COEFFICIENTS
- Authors: Ilyukhin D.O.1, Parusnikova A.V.2
- 
							Affiliations: 
							- State Budgetary Educational Institution “Bauman Engineering School” № 1580
- HSE University
 
- Issue: No 1 (2025)
- Pages: 5-9
- Section: COMPUTER ALGEBRA
- URL: https://journal-vniispk.ru/0132-3474/article/view/287074
- DOI: https://doi.org/10.31857/S0132347425010015
- EDN: https://elibrary.ru/DXVBZG
- ID: 287074
Cite item
Abstract
Keywords
About the authors
D. O. Ilyukhin
State Budgetary Educational Institution “Bauman Engineering School” № 1580Moscow, Russia
A. V. Parusnikova
HSE University
														Email: aparusnikova@hse.ru
				                					                																			                								 				                								Moscow, Russia						
References
- Zoladek H. The monodromy group // Instytut matematyczny PAN. Basel: Birkhauser Verlag (2006).
- Moser J. The order of a singularity in Fuchs’ theory // Math Z. 1959. V. 72. P. 379–398.
- Barkatou A. A rational version of Moser’s algorithm // Proceedings of the 1995 international symposium on Symbolic and algebraic computation. April. 1995. P. 297–302.
- Bruno A.D. Meromorphic conductivity of a linear triangular system of ODEs, Dokl. Akad. Nauk, 2000, vol. 371, no. 5, pp. 587–590
- Vyugin I.V., Gontsov R.R. Additional parameters in inverse problems of monodromy, Sbornik: Mathematics, 2006, vol. 197, no. 12, pp. 1753–1773
- Ilyukhin D.O., Parusnikova A.V. Regularity criterion for linear systems of linear differential equations of small orders with meromorphic coefficients, Tr. Priokskoi nauchnoi konferentsii Differentsial’nye uravneniya i smezhnye voprosy matematiki (Proc. Priokskaya Sci. Conf. Differential Equations and Related Topics in Mathematics), 2019, pp. 65–73
- azov V. Asimptoticheskie razlozheniya reshenii obyknovennykh differentsial’nykh uravnenii (Asymptotic Expansions of Solutions of Ordinary Differential Equations), Moscow: Mir, 1968.
- Wolfram St. The Mathematica Book. Wolfram Media, Inc., 2003. 1488 p.
- Gromak V.I., Laine I., and Shimomura S. Painleve Differential Equations in the Complex Plane // De Gruyter Studies in Mathematics, vol. 28, Berlin, 2002.
- Lin Y., Dai D., Tibboel P. Existence and uniqueness of tronquee solutions of the third and fourth Painleve equations // Nonlinearity. 2014. Vol. 27. No. 2. P. 171–186.
- Parusnikova A.V., Vasilyev A.V. On the exact Gevrey order of formal Puiseux series solutions to the third Painleve equation // Journal of Dynamical and Control Systems. 2019. Vol. 25. No. 4. P. 681–690.
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
				
 
  
  
  Email this article
			Email this article 
 Open Access
		                                Open Access Access granted
						Access granted Subscription Access
		                                		                                        Subscription Access
		                                					