DEVELOPMENT OF ALGORITHMIC AND SOFTWARE SUPPORT FOR SYMBOLIC COMPUTATIONS IN PROBLEMS OF CONSTRUCTING CONTROLLED COMPARTMENTAL MODELS OF DYNAMIC SYSTEMS
- Authors: Petrov A.A.1, Druzhinina O.V.2, Masina O.N.1, Demidova A.V.3
-
Affiliations:
- Bunin Yelets State University
- Federal Research Center “Computer Science and Control” Russian Academy of Sciences
- Peoples’ Friendship University of Russia
- Issue: No 1 (2025)
- Pages: 26-39
- Section: COMPUTER ALGEBRA
- URL: https://journal-vniispk.ru/0132-3474/article/view/287077
- DOI: https://doi.org/10.31857/S0132347425010043
- EDN: https://elibrary.ru/DXNKAM
- ID: 287077
Cite item
Abstract
About the authors
A. A. Petrov
Bunin Yelets State University
Email: xeal91@yandex.ru
Yelets, Russia
O. V. Druzhinina
Federal Research Center “Computer Science and Control” Russian Academy of Sciences
Email: ovdruzh@mail.ru
Moscow, Russia
O. N. Masina
Bunin Yelets State University
Email: olga121@inbox.ru
Yelets, Russia
A. V. Demidova
Peoples’ Friendship University of Russia
Email: demidova-av@rudn.ru
Moscow, Russia
References
- Kulyabov D.S., Korol’kova A.V. Computer algebra in JULIA, Program. Comput. Software, 2021, vol. 47, pp. 133–138.
- Korol’kova A.V., Gevorkyan M.N., Fedorov A.V., Shtepa K.A., Kulyabov D.S. Symbolic studies of Maxwell’s equations in space-time algebra formalism // Programming and Computer Software. 2024. V. 50. № 2. P. 166–171.
- Bittner B., Sreenath K. Symbolic Computation of Dynamics on Smooth Manifolds // In: Goldberg K., Abbeel P., Bekris K., Miller L. (eds) Algorithmic Foundations of Robotics XII. Springer Proceedings in Advanced Robotics. 2020. V. 13. Springer, Cham. P. 336–351. https://doi.org/10.1007/978-3-030-43089-4_22
- Kolesov Yu.B., Senichenkov Yu.B. Komponentnoe modelirovanie slozhnykh dinamicheskikh sistem (Component Modeling of Complex Dynamic Systems), St. Petersburg: S.-Peterb. Politekh. Univ. PetraVelikogo, 2020.
- Banshchikov A., Vetrov A. Application of software tools for symbolic description and modeling of mechanical systems // CEUR Workshop Proceedings. 2. ser. ”ICCSDE 2020 — Proceedings of the 2nd International Workshop on Information, Computation, and Control Systems for Distributed Environments”. 2020. P. 33–42.
- Banshchikov A.V. Application of computer algebra to analysis of gyroscopic stabilization of orbital gyrostat equilibria, Vestn. Yuzhno-Ural. Gos. Univ. Ser: Mat. Model. Program., 2021, vol. 14, no. 2, pp. 70–77. https://doi.org/10.14529/mmp210207
- . Demidova A.V., Druzhinina O.V., Masina O.N., Petrov A.A. Development of algorithms and software for modeling controlled dynamic systems using symbolic computations and stochastic methods, Program. Comput. Software, 2023, vol. 49, pp. 108–121.
- Bezanson J., Karpinski S., Shah V., Edelman A. Julia: A fast dynamic language for technical computing, 2012. https://arxiv.org/abs/1209.5145
- Strauss R.R., Bishnu S., Petersen M.R. Comparing the performance of Julia on CPUs versus GPUs and JuliaMPI versus Fortran-MPI: A case study with MPASOcean (Version 7.1) // EGUsphere. 2023. V. 2023. P. 1–22.
- Demidova A.V., Druzhinina O.V., Masina O.N., Petrov A.A. Constructing compartmental models of dynamic systems using a software package for symbolic computation in Julia, Program. Comput. Software, 2024, vol. 50, pp. 138–146.
- Brauer F. Mathematical epidemiology: Past, present, and future // Infectious Disease Modelling. 2017. V. 2. P. 113–127.
- Kabanikhin S.I., Krivorotko O.I. Optimization methods for solving inverse immunology and epidemiology problems, Comput. Math. Math. Phys., 2020, vol. 60, pp. 580–589.
- Patlolla P., Gunupudi V., Mikler A.R., Jacob R.T. Agent-Based Simulation Tools in Computational Epidemiology // 4th International Workshop, International Conference on Innovative Internet Community Systems (I2CS ’04). Berlin/Heidelberg: Springer, 2004. P. 212–223.
- Al’-Azazi A., Skvortsov A.V., Maslennikov B.I. Compartment model of epidemic disease spread (by example of tuberculosis-HIV), Vestn. Tver. Gos. Tekh. Univ., 2013, vol. 23, no. 1, pp. 3–9.
- Kotin V.V., Chervyakov N.M. Uncertainty of initial conditions in the SEIR model with vaccination, Biomed. Radioelektron., 2019, no. 6, pp. 40–47. https://doi.org/10.18127/j15604136-201906-07
- Martcheva M. An introduction to mathematical epidemiology. Springer, 2015.
- Romanyukha A.A. Matematicheskie modeli v immunologii i epidemiologii infektsionnykh zabolevanii (Mathematical Models in Immunology and Epidemiology of Infectious Diseases), Moscow: BINOM. Laboratoriya znanii, 2012.
- Gromov D.V., Bulla I., Romero-Severson E.O., Serea O.S. Numerical optimal control for HIV prevention with dynamic budget allocation // Mathematical Medicine and Biology. 2016. V. 35. № 4. P. 469–491.
- Hamelin F., Iggidr A., Rapaport A., Sallet G. Observability, Identifiability and Epidemiology A survey, 2021.
- Kotin V.V., Sychugina A.S. Optimization of software-based control of vaccination procedures, Biomed. Radioelektron., 2016, no. 7, pp. 25–30
- Kotin V.V., Litun E.I., Litun S.I. Optimization of the sequential vaccination regimen and assessment of attainability domains, Biomed. Radioelektron., 2017, no. 9, pp. 29–34.
- . Zhukov V.V., Kotin V.V. Effectiveness, control and optimality of vaccination, Biomed. Radioelektron., 2018, no. 10, pp. 52–56.
- Ovsyannikova N.I. Search for optimal control in an epidemic model, Zh. Srednevolzhskogo Mat. O-va., 2009, vol. 11, no. 2, pp. 119–126
- Hansen E., Day T. Optimal control of epidemics with limited resources // J. Math. Biol. 2011. V. 62. № 3. P. 423–451. https://doi.org/10.1007/s00285-010-0341-0
- Zhou Y., Wu J., Wu M. Optimal isolation strategies of emerging infectious diseases with limited resources // Math. Biosci. Eng. 2013. V. 10.№ 5–6. P. 1691–1701. https://doi.org/10.3934/mbe.2013.10.1691
- Zhou P., Yang X.L., Wang X.G. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin // Nature. 2020. V. 579. № 7798. P. 270–273. https://doi.org/10.1038/s41586-020-2012-7
- Yang Z., Zeng Z., Wang K. et al. Modified SEIR and AI prediction of the epidemics trend of COVID-19 in China under public health interventions // J. Thorac. Dis. 2020. V. 12. № 3. P. 165–174. https://doi.org/10.21037/jtd.2020.02.64
- Karpenko A.P. Sovremennye algoritmy poiskovoi optimizatsii. Algoritmy, vdokhnovlennye prirodoi (Modern Search Engine Optimization Algorithms: Algorithms Inspired by Nature), Moscow: Bauman Moscow State Tech. Univ., 2016, 2nd ed.
- Demidova A.V., Druzhinina O.V., Masina O.N., Petrov A.A. Synthesis and computer study of population dynamics controlled models using methods of numerical optimization, stochastization and machine learning // Mathematics. 2021. V. 9. Iss. 24. P. 3303. https://doi.org/10.3390/math9243303
- Nowakova J., Pokorny M. Intelligent Controller Design by the Artificial Intelligence Methods // Sensors. 2020. V. 20. № 16. P. 4454. https://doi.org/10.3390/s20164454
- Lekone P.E., Finkenstadt B.F. Statistical Inference in a Stochastic Epidemic SEIR Model with Control Intervention: Ebola as a Case Study // Biometrics. 2006. V. 62. P. 1170–1177.
- Pertsev N.V., Leonenko V.N. Discrete stochastic model of HIV infection spread within a heterogeneous population // Russian Journal of Numerical Analysis and Mathematical Modelling. 2012. V. 27. P. 459–477.
- Shabunin A.V. SIRS model of infection disease spread with dynamic regulation of population size: A study using probabilistic cellular automata, Izv. Vyssh. Uchebn. Zaved., Prikl. Nelineinaya Din., 2019, vol. 27, no. 2, pp. 5–20
- Allen L.J.S. An Introduction to Stochastic Epidemic Models // Mathematical Epidemiology / Ed. by F. Brauer, P. van den Driessche, J. Wu. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. P. 81–130. https://doi.org/10.1007/978-3-540-78911-6_3
- Klochkova L.V., Orlov Yu.N., Tishkin V.F. Mathematical modeling of stochastic virus spread processes in human habitats, Prepr. Inst. Prikl. Mat. Keldysha, 2020, no. 114.
- Ovsyannikova N.I. Stochastic model of epidemic, Nauchn. Vestn. Mos. Gos. Tekhn. Univ. Grazhdanskoi Aviats., 2016, no. 224, pp. 107–114.
- Gevorkyan M.N., Demidova A.V., Velieva T.R., Korol’kova A.V., Kulyabov D.S., Sevast’yanov L.A. Implementing a method for stochastization of one-step processes in a computer algebra system, Program. Comput. Software, 2018, vol. 44, pp. 86–93.
- Korolkova A., Kulyabov D. Onestep stochastization methods for open systems // EPJ Web of Conferences. 2020. V. 226. P. 02014. https://doi.org/10.1051/epjconf/202022602014
Supplementary files
