SYMBOLIC CALCULATIONS IN THE STUDY OF SECULAR PERTURBATIONS IN THE MANY-BODY PROBLEM WITH VARIABLE MASSES

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The problem of deriving differential equations determining secular perturbations of orbital elements in a multiplanetary system is considered in the case when the central star loses its mass isotropically, while the masses of the planets can change anisotropically, which leads to the appearance of reactive forces. As a model of a multiplanetary system, the classical problem of variable-mass bodies is used, when bodies move around the central star along quasi-elliptical nonintersecting orbits and interact with each other in accordance with the law of universal gravitation. It is assumed that the masses of the bodies change at different rates and the laws of mass change are considered to be arbitrary given functions of time. Differential equations of motion of bodies in osculating elements of aperiodic motion along quasi-conical orbits corresponding to the planetary Lagrange equations are derived. An algorithm for calculating the perturbing functions in the form of power series in small parameters and the derivation of differential equations determining secular perturbations of orbital elements are discussed. All necessary symbolic calculations are performed using the Wolfram Mathematica computer algebra system.

About the authors

A. N. Prokopenya

Warsaw University of Life Sciences

Email: alexander_prokopenya@sggw.edu.pl
Warsaw, Poland

M. Zh. Minglibayev

Al-Farabi Kazakh National University

Email: minglibayev@gmail.com
Almaty, Kazakhstan

M. R. Saparova

Al-Farabi Kazakh National University

Email: moldir170788@gmail.com
Almaty, Kazakhstan

References

  1. Roy A.E. Orbital Motion, Bristol: Hilger, 1978
  2. Murray K.D., Dermot S.F. Solar System Dynamics, Cambridge: Cambridge Univ. Press, 1999.
  3. Laskar J. Chaotic diffusion in the Solar System. Icarus. 2008. V. 196(1). P. 1–15.
  4. Zeebe R.E. Dynamic stability of the solar system: statistically inconclusive results from ensemble integrations. The Astrophysical Journal. 2015. V. 798:8. P. 1–13.
  5. Makkeev A.P. Libration Points in Celestil Mechanics and Space Dynamics, Moscow: Nauka, 1978 [in Russian]
  6. Celletti A., Chierchia L. KAM stability for a threebody problem of our Solar System. Zeitschrift fur angewandte Mathematik und Physik ZAMP. 2006. V. 57. P. 33–41.
  7. Prokopenya A.N. Determination of the stability boundaries for the Hamiltonian systems with periodic coeffficients. Mathematical Modelling and Analysis. 2005. V. 10(2). P. 191–204.
  8. Prokopenya A.N. Computing the stability boundaries for the Lagrange triangular solutions in the elliptic restricted three-body problem. Mathematical Modelling and Analysis. 2006. V. 11(1). P. 95–104.
  9. Giorgilli A., Locatelli U., Sansottera M. Secular dynamics of a planar model of the Sun-JupiterSaturn-Uranus system; effective stability in the light of Kolmogorov and Nekhoroshev theories. Regular and Chaotic Dynamics. 2017. V. 22(1). P. 54–77.
  10. Perminov A.S., Kuznetsov E.D. The implementation of Hori–Deprit method to the construction averaged planetary motion theory by means of Computer Algebra System Piranha. Mathematics in Computer Science. 2020. V. 14. P. 305–316.
  11. Prokopenya A.N. Some symbolic computation algorithms in cosmic dynamics problems, Program. Comput. Software, 2006, vol. 32, no. 2, pp. 71–76
  12. . Prokopenya A.N. Symbolic Computation in Studying Stability of Solutions of Linear Differential Equations with Periodic Coefficients, Program. Comput. Software, 2007, vol. 33, no. 2, pp. 60–66
  13. Prokopenya A.N. Hamiltonian normalization in the restricted many-body problem by computer algebra methods, Program. Comput. Software, 2012, vol. 38, no. 3, pp. 156–169.
  14. Bruno A.D., Batkhin A.B. Survey of eight modern methods of Hamiltonian mechanics. Axioms. 2021. V. 10:293. P. 1–32.
  15. Gutnik S.A., Sarychev V.A. Symbolic-analytic methods for studying equilibrium orientations of a satellite on a circular orbit, Program. Comput. Software, 2021, vol. 47, no. 2, pp. 119–123.
  16. Gutnik S.A., Sarychev V.A. Symbolic methods for studying the equilibrium orientations of a system of two connected bodies in a circular orbit, Program. Comput. Software, 2022, vol. 48, no. 2, pp. 73–79.
  17. Omarov T.B. Non-Stationary Dynamical Problems in Astronomy. – Nova Science Publ., New York, 2002. 260 p.
  18. Bekov A.A., Omarov T.B. The theory of orbits in non-stationary stellar systems. Astronomical and Astrophysical Transactions. 2003. V. 22(2). P. 145–153.
  19. Eggleton P. Evolutionary processes in binary and multiple stars. – Cambridge University Press, Cambridge, 2006. 332 p.
  20. Veras D. Post-main-sequence planetary system evolution. Royal Society open science. 2016. V. 3. P. 150571.
  21. Berkovic L.M. Gylden-Mescerski problem. Celestial Mechanics. 1981. V. 24. P. 407–429.
  22. Minglibayev M.Zh. Dynamics of Gravitating Bodies with Variable Size and Mass, Lambert, 2012
  23. Minglibayev M.Zh., Mayemerova G.M. Evolution of the orbital-plane orientations in the two-protoplanet three-body problem with variable masses. Astronomy Reports. 2014. V. 58(9). P. 667–677.
  24. Prokopenya A.N., Minglibayev M.Zh., Mayemerova G.M. Symbolic calculations in studying the problem of three bodies with variable masses, Program. Comput. Software, 2014, vol. 40, no. 2, pp. 79–85
  25. Prokopenya A.N., Minglibayev M.Zh., Beketauov B.A. Secular perturbations of quasi-elliptic orbits in the restricted three-body problem with variable masses. International Journal of Non-Linear Mechanics. 2015. V. 73. P. 58–63.
  26. Prokopenya A.N., Minglibayev M.Zh., Mayemerova G.M., Imanova Zh.U. Investigation of the restricted problem of three bodies of variable masses using computer algebra, Program. Comput. Software, 2017, vol. 43, no. 5, pp. 289–293.
  27. Minglibayev M.Zh., Prokopenya A.N., Mayemerova G.M., Imanova Zh.U. Three-body problem with variable masses that change anisotropically at different rates. Mathematics in Computer Science. 2017. V. 11(3-4). P. 383–391.
  28. Prokopenya A.N., Minglibayev M.Zh., Shomshekova S.A. Applications of computer algebra in the study of the two-planet problem of three bodies with variable masses, Program. Comput. Software, 2019, vol. 45, no. 2, pp. 73–80.
  29. Minglibayev M.Zh., Kosherbayeva A.B. Differential equations of planetary systems. Reports of the National Academy of Sciences of the Republic of Kazakhstan. 2020. V. 2(330). P. 14–20.
  30. Ibraimova A.T., Minglibayev M.Zh., Prokopenya A.N. Study of secular perturbations in the restricted threebody problem of variable masses using computer algebra, Comput. Math. Math. Phys., 2023, vol. 63, no. 1, pp. 115–125
  31. Imanova Zh., Prokopenya A., Minglibayev M. Modeling the evolution of the two-planetary threebody system of variable masses. Mathematical Modelling and Analysis. 2023. V. 28(4). P. 636–652.
  32. Prokopenya A.N., Minglibayev M.Zh., Kosherbayeva A.B. Derivation of evolutionary equations in the manybody problem with isotropically varying masses using computer algebra, Program. Comput. Software, 2022, vol. 48, no. 2, pp. 107–115.
  33. Prokopenya A., Minglibayev M., Kosherbayeva A. Modeling the dynamics of a multi-planetary system with anysotropic mass variation. In: L. Franco et al. (Eds.): Computational Science – ICCS 2024. Lecture Notes in Computer Science, vol. 14836. Springer, Cham, 2024. P. 181–196.
  34. Wolfram S. An elementary introduction to the Wolfram Language. – Wolfram Media, Inc., 2016

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).