ON INTEGRABILITY OF TWO- AND THREE-DIMENSIONAL DYNAMICAL SYSTEMS WITH A QUADRATIC RIGHT-HAND SIDE

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A heuristic method that allows us to determine in advance the cases of integrability of autonomous dynamical systems with a polynomial right-hand side is used. The capabilities of this method are demonstrated using examples of two- and three-dimensional dynamical systems with a quadratic nonlinearity. A significant achievement compared to previous works is the ability to study systems of a general type without resonances in the linear parts, which is achieved by generalizing the results of resonance cases. Thus, it becomes possible to use the obtained results when working with dynamical models of real systems.

About the authors

V. F. Edneral

Skobeltsyn Institute of Nuclear Physics, Moscow State University

Email: edneral@theory.sinp.msu.ru
Moscow, Russia

References

  1. Брюно А.Д. Аналитическая форма дифференциальных уравнений (I, II) // Труды московского мат. общества. 1971. Т. 25. С. 119–262; 1972. Т. 26. С. 199–239.
  2. Bruno A.D. Analytical form of differential equations (I, II) // Trans. Moscow Math. Soc. 1971, vol. 25, pp. 131–288; 1972, vol. 26, pp. 199–239.
  3. Брюно А.Д. Локальный метод нелинейного анализа дифференциальных уравнений. М.: Наука, 1979. 254 с.
  4. Bruno A.D. Local Methods in Nonlinear Differential Equations. Berlin: Springer-Verlag, 1989. 348 p.
  5. Брюно А.Д., Еднерал В.Ф. Нормальная форма и интегрируемость систем ОДУ // Программирование. 2006.№3. С. 22–29.
  6. Bruno A.D., Edneral V.F. Normal forms and integrability of ODE systems // Programming and Computer Software, 2006, vol. 32, no. 3, pp. 139–144.
  7. Edneral V.F. Integrable Cases of the Polynomial Lienard-type Equation with Resonance in the Linear Part // Mathematics in Computer Science. 2023. Vol. 17(19). doi: 10.1007/s11786-023-00567-6.
  8. Bruno A.D., Edneral V.F. Integration of a degenerate system of ODEs // Programming and Computer Software. 2024. Vol. 50. No. 2. Р. 128–137.
  9. Rand R.H. Lecture Notes on Nonlinear Vibrations // Ithaca NY: Cornell University, 2012. 118 p.
  10. Lienard A. Etude des oscillations entretenues // Revue generale de l’electricite. 1928. Vol. 23. Р. 901–912 and 946–954.
  11. Edneral V.F., Khanin R. Application of the resonant normal form to high-order nonlinear odes using MATHEMATICA // Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2003. Vol. 502. No. 2–3. Р. 643–645.
  12. Bomze I.M. Lotka–Volterra equation and replicator dynamics: a two-dimensional classification // Biological Cybernetics. 1983. Vol. 48. Р. 201–211.
  13. Romanovski V.G., Shafer D.S. The Center and Cyclicity Problems: A Computational Algebra Approach // Birkhuser, Boston, 2009. 330 p.
  14. Edneral V.F. Integrable Cases of the Bautin System // MCS, 2025. In printing.
  15. Леванов А.В., Антипенко Э.Е. Введение в химическую кинетику. М.: МГУ, 2006. 51 с.
  16. Levanov A.V., Antipenko E.E. Introduction to chemical kinetics. M.: Moscow State University, 2006, 51 p.
  17. Корзухин М.Д., Жаботинский А.М. Математическое моделирование химических и экологических автоколебательных систем. М.: Наука, 1965.
  18. Korzukhin M.D., Zhabotinsky A.M. Mathematical modeling of chemical and environmental selfoscillating systems. M.: Nauka, 1965 (in Russ.).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».