ALGORITHM FOR FINDING SINGULAR POINTS OF A GENERAL ALGEBRAIC HYPERSURFACE

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In this paper, an algorithm for calculating the parameterization of the Horn–Kapranov — discriminant set and singular points of an algebraic hypersurface, using the Maple computer algebra system, is proposed.

About the authors

A. P. Lyapin

Siberian Federal University; Shenzhen MSU-BIT University

Email: aplyapin@sfu-kras.ru
Krasnoyarsk, Russia; Shenzhen, China

E. N. Mikhalkin

Siberian Federal University; Krasnoyarsk State Pedagogical University

Email: mikhalkin@bk.ru
Krasnoyarsk, Russia; Krasnoyarsk, Russia

References

  1. Abramov S.A., Petkovsek M., Ryabenko A.A. Hypergeometric Solutions of First-order Linear Difference Dystems with Rational-function Coefficients // Lecture Notes in Computer Science. 2015.№9301. P. 1–14.
  2. Abramov S.A., Ryabenko A.A., Khmelnov D.E. Regular Solutions of Linear Ordinary Differential Equations and Truncated Series // Comput. Math. Math. Phys. 2020.№60(1). P. 1–14.
  3. Apanovich M.S., Lyapin A.P., Shadrin K.V. Solving the Cauchy Problem for a Two-Dimensional Difference Equation at a Point Using Computer Algebra Methods // Programming and Computer Software. 2021.№47(1). P. 1–5.
  4. Kytmanov A.A., Lyapin A.P., Sadykov T.M. Evaluating the Rational Generating Function for the Solution of the Cauchy Problem for a Two-dimensional Difference Equation with Constant Coefficients // Programming and Computer Software. 2017. №43(2). P. 105–111.
  5. Lyapin A.P., Mikhalkin E.N. Algorithm of calculation of the truncation of the discriminant of a polynomial // Programming and Computer Software. 2023.№49(1). P. 49–53.
  6. Barsan V. An Improved Algorithm for Solving the Quintic Equation // Romanian Reports in Physics. 2022.№74(4). P. 117.
  7. Лебедев А.В., Трубников Ю.В., Чернявский М.М. Об определителях Адамара и Вандермонда и методе Бернулли–Эйлера–Лагранжа–Эйткена вычисления корней полиномов // Матем. заметки. 2024.№116(1). P. 91–108.
  8. Lebedev A.V., Trubnikov Yu.V., Chernyavskii M.M. On the Hadamard and Vandermonde determinants and the Bernoulli–Euler–Lagrange–Aitken method for calculating the roots of polynomials, Matem. zametki., 2024, vol. 116, no. 1, pp. 91–108.
  9. Gelfand I., Kapranov M., Zelevinsky A. Discriminants, Resultants and Multidimensional determinants, Birkhauser: Boston, 1994.
  10. Passare M., Tsikh A.K. Algebraic equations and hypergeometric series // The legacy of Niels Henrik Abel, Springer: Berlin–Heidelberg–New York, 2004. P. 653–672.
  11. Antipova I.A., Mikhalkin E.N., Tsikh A.K. Singular points of complex algebraic hypersurfaces // Journal of Siberian Federal University. Mathematics & Physics. 2018.№11(6). P. 670–679.
  12. Antipova I.A., Mikhalkin E.N., Tsikh A.K. Rational expressions for multiple roots of algebraic equations // Matem. sb. 2018.№209(10). P. 1419–1444.
  13. Antipova I.A., Tsikh A.K. The discriminant locus of a sistem of n Laurent polynomials in n variables // Izv. Math. 2012.№76(5). P. 881–906.
  14. Krasikov V.A., Sadykov T.M. On the analytic complexity of discriminants // Proceedings of the Steklov Institute of Mathematics. 2012. № 279. P. 78–92.
  15. Beloshapka V.K. Analytic complexity of functions of two variables // Russ. J. Math. Phys. 2007.№14(3). P. 243–249.
  16. Dickenstein A., Sadykov T.M. Algebraicity of solutions to the Mellin system and its monodromy // Doklady Mathematics. 2007.№75(1). P. 80–82.
  17. Lawton W.M. An Explanation of Mellin’s 1921 Paper // The Bulletin of Irkutsk State University. Series Mathematics. 2023.№46. P. 98–109.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).