Study of surface representation methods based on signed distance functions

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper studies surface rendering methods based on ray tracing for representations based on signed distance functions. The main objects of interest were the rendering algorithm execution time, the amount of memory occupied, and the accuracy of the surface representation estimated by the render using the PSNR metric. Six different representations and four intersection search algorithms were analyzed. In all cases, a bounding volume hierarchy was used as an accelerating structure. The comparison revealed promising representations and algorithms and showed that distance functions in some cases are not inferior to polygonal models in speed, while they can win in terms of memory consumption and represent the surface with a good level of accuracy.

About the authors

A. R. Garifullin

Keldysh Institute of Applied Mathematics, Russian Academy of Sciences

Author for correspondence.
Email: albert.garifullin@gin.keldysh.ru
4 Miusskaya Square, Moscow, 125047 Russia

V. A. Frolov

Institute of Artificial Intelligence, Moscow State University; Keldysh Institute of Applied Mathematics, Russian Academy of Sciences; Faculty of Computational Mathematics and Cybernetics, Moscow State University

Email: vladimir.frolov@graphics.cs.msu.ru
Leninskie Gory, Moscow, 119899 Russia; 4 Miusskaya Square, Moscow, 125047 Russia; Leninskie Gory, Moscow, 119991 Russia

A. S. Budak

Institute of Artificial Intelligence, Moscow State University; Faculty of Computational Mathematics and Cybernetics, Moscow State University

Email: s02220347@gse.cs.msu.ru
Leninskie Gory, Moscow, 119899 Russia; Leninskie Gory, Moscow, 119991 Russia

V. A. Galaktionov

Keldysh Institute of Applied Mathematics, Russian Academy of Sciences

Email: vlgal@gin.keldysh.ru
4 Miusskaya Square, Moscow, 125047 Russia

References

  1. Rogers D.F. An Introduction to NURBS: With Historical Perspective, Elsevier, 2000.
  2. Sitzmann V., Martel J., Bergman A., Lindell D., Wetzstein G. Implicit neural representations with periodic activation functions, Advances in Neural Information Processing Systems, Larochelle H., Ranzato M., Hadsell R., Balcan M.F., and Lin H., Eds., Curran Associates, 2020, vol. 33, pp. 7462–7473. https://proceedings.neurips.cc/paper_files/paper/2020/file/53c04118df112c13a8c34b38343b9c10-Paper.pdf
  3. Takikawa T., Litalien J., Yin K., Kreis K., Loop Ch., Nowrouzezahrai D., Jacobson A., Mcguire M., Fidler S. Neural geometric level of detail: Real-time rendering with implicit 3d shapes, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, 2021, IEEE, 2021, pp. 11358–11367. https://doi.org/10.1109/cvpr46437.2021.01120
  4. Luan F., Zhao Sh., Bala K., Dong Zh. Unified shape and SVBRDF recovery using differentiable Monte Carlo rendering, Comput. Graphics Forum, 2021, vol. 40, no. 4, pp. 101–113. https://doi.org/10.1111/cgf.14344
  5. Nicolet B., Jacobson A., Jakob W. Large steps in inverse rendering of geometry, ACM Trans. Graphics, 2021, vol. 40, no. 6, p. 248. https://doi.org/10.1145/3478513.3480501
  6. Vicini D., Speierer S., Jakob W. Differentiable signed distance function rendering, ACM Trans. Graphics, 2022, vol. 41, no. 4, p. 125. https://doi.org/10.1145/3528223.3530139
  7. Cao Yu., Li H. DiffSDF: Learning implicit surface from noisy point clouds, 2023 International Conference on Digital Image Computing: Techniques and Applications (DICTA), Port Macquarie, Australia, 2023, IEEE, 2023, pp. 197–204. https://doi.org/10.1109/DICTA60407.2023.00035
  8. Hart J.C. Sphere tracing: A geometric method for the antialiased ray tracing of implicit surfaces, Visual Comput., 1996, vol. 12, no. 10, pp. 527–545. https://doi.org/10.1007/s003710050084
  9. Quilez I. Distance functions. https://iquilezles.org/articles/distfunctions/ (сited June 12, 2024)
  10. Quilez I. Raymarching terrain. https://iquilezles.org/articles/terrainmarching/ (сited June 12, 2024)
  11. Polkowski D. San Base: Forefront of computer graphics. https://www.youtube.com/@lashenko (сited June 12, 2024)
  12. Frisken S.F., Perry R.N., Rockwood A.P., Jones T.R. Adaptively sampled distance fields: A general representation of shape for computer graphics, Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, New Orleans, 2000, New York: ACM Press/Addison-Wesley, 2000, pp. 249–254. https://doi.org/10.1145/344779.344899
  13. Sellers G., Kessenich J. Vulkan Programming Guide: The Official Guide to Learning Vulkan, Addison–Wesley, 2016.
  14. Koschier D., Deul C., Brand M., Bender J. An hp-adaptive discretization algorithm for signed distance field generation, IEEE Trans. Visualization Comput. Graphics, 2017, vol. 23, no. 10, pp. 2208–2221. https://doi.org/10.1109/tvcg.2017.2730202
  15. Söderlund H.H., Evans A., Akenine-Möller T. Ray tracing of signed distance function grids, Journal of Computer Graphics Techniques, 2022, vol. 11, no. 3, pp. 94–113.
  16. Fujimoto A., Iwata K. Accelerated ray tracing, Computer Graphics, Kunii T.L., Ed., Tokyo: Springer, 1985, pp. 41–65. https://doi.org/10.1007/978-4-431-68030-7_4
  17. Weier P., Rath A., Michel É., Georgiev I., Slusallek P., Boubekeur T. N-BVH: Neural ray queries with bounding volume hierarchies, Special Interest Group on Computer Graphics and Interactive Techniques Conference Conference Papers’24, Denver, CO, 2024, Burbano A., Zorin D., and Jarosz W., Eds., New York: Association for Computing Machinery, 2024, p. 99. https://doi.org/10.1145/3641519.3657464
  18. Fujieda S., Kao C.C., Harada T. Neural intersection function, High-Performance Graphics – Symposium Papers, Bikker J. and Gribble Ch., Eds., The Eurographics Association, 2023. https://doi.org/10.2312/hpg.20231135
  19. Galin E., Guérin E., Paris A., Peytavie A. Segment tracing using local Lipschitz bounds, Comput. Graphics Forum, 2020, vol. 39, no. 2, pp. 545–554. https://doi.org/10.1111/cgf.13951
  20. Marmitt G., Kleer A., Friedrich H., Wald I., Slusallek P. Fast and accurate ray-voxel intersection techniques for iso-surface ray tracing, Proceedings of the Vision, Modeling, and Visualization Conference (VMV 2004), Stanford, CA, 2004, vol. 4, pp. 429–435.
  21. Stich M., Friedrich H., Dietrich A. Spatial splits in bounding volume hierarchies, Proceedings of the Conference on High Performance Graphics 2009, New Orleans, 2009, Spencer S.N., McAllister D., Pharr M., and Wald I., Eds., New York: Association for Computing Machinery, 2009, pp. 7–13. https://doi.org/10.1145/1572769.1572771
  22. Wald I., Woop S., Benthin C., Johnson G.S., Ernst M. Embree: A kernel framework for efficient CPU ray tracing, ACM Trans. Graphics, 2014, vol. 33, no. 4, p. 143. https://doi.org/10.1145/2601097.2601199
  23. Frolov V., Sanzharov V., Galaktionov V. Kernel_slicer: High-level approach on top of GPU programming API, 2022. Ivannikov Ispras Open Conference (ISPRAS), Moscow, 2022, IEEE, 2022, pp. 11–17. https://doi.org/10.1109/ispras57371.2022.10076850
  24. Zhdanov D.D., Potemin I.S., Zhdanov A.D. Embree technology for ray tracing in optical systems with free shape surfaces, Trudy 33-i Mezhdunarodnoi konferentsii po komp’yuternoi grafike i mashinnomu zreniyu GrafiKon 2023 (Proceedings of the 33rd International Conference on Computer Graphics and Machine Visiton GraphiCon2023), Moscow: Institut Prikladnoi Matematiki im. M.V. Keldysha Rossiiskoi Akademii Nauk, 2023, vol. 33, pp. 97–107. https://doi.org/10.20948/graphicon-2023-97-107
  25. Jones M.W. Distance field compression, J. WSCG, 2004, vol. 12, no. 2, pp. 199–204.
  26. Nießner M., Zollhöfer M., Izadi Sh., Stamminger M. Real-time 3D reconstruction at scale using voxel hashing, ACM Trans. Graphics, 2013, vol. 32, no. 6, p. 169. https://doi.org/10.1145/2508363.2508374
  27. Boyko A.I., Matrosov M.P., Oseledets I.V., Tsetserukou D., Ferrer G. TT-TSDF: Memory-efficient TSDF with low-rank tensor train decomposition, 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, 2020, IEEE, 2020, pp. 10116–10121. https://doi.org/10.1109/iros45743.2020.9341464
  28. Garland M., Heckbert P.S. Surface simplification using quadric error metrics, Seminal Graphics Papers: Pushing the Boundaries, Volume 2, Whitton M.C., Ed., New York: Association for Computing Machinery, 2023, vol. 2, p. 15. https://doi.org/10.1145/3596711.3596727

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».