Synthesis and Structure of New Potassium and Cesium Zinc Diphosphates

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This article presents the results of a study of new solid solutions formed in the system of diphosphates of alkaline elements and zinc: K2Zn3(P2O7)2–Cs2Zn3(P2O7)2. The obtained materials are promising as matrices for creating phosphors. The formation of phases containing two alkali cations is established on samples obtained by solid-phase synthesis by X-ray phase analysis, and the results of studying their thermal stability are presented.

About the authors

D. I. Tsygankova

Grebenshchikov Institute of Silicate Chemistry, Russian Academy of Sciences, 199034, St. Petersburg, Russia; Ulyanov (Lenin) St. Petersburg State Electrotechnical University “LETI,”, 197022, St. Petersburg, Russia

Email: sinelshikova@mail.com
Россия, 199034, Санкт-Петербург, наб. Макарова, д. 2; Россия, 197022, Санкт-Петербург, ул. Профессора Попова, д. 5

O. Yu. Sinel’shchikova

Grebenshchikov Institute of Silicate Chemistry, Russian Academy of Sciences, 199034, St. Petersburg, Russia

Email: sinelshikova@mail.com
Россия, 199034, Санкт-Петербург, наб. Макарова, д. 2

V. L. Ugolkov

Grebenshchikov Institute of Silicate Chemistry, Russian Academy of Sciences, 199034, St. Petersburg, Russia

Author for correspondence.
Email: sinelshikova@mail.com
Россия, 199034, Санкт-Петербург, наб. Макарова, д. 2

References

  1. Volkov S., Petrova M., Sinel’shchikova O., Firsova V., Popova V., Ugolkov V., Krzhizhanovskaya M., Bubnova R. Crystal structure and thermal properties of the LixNa1–xKZnP2O7 solid solutions and its relation to the MM′ZnP2O7 diphosphate family // J. Solid State Chem. 2019. V. 269. P. 486–493
  2. Sunitha A.M., Gopalakrishna G.S., Byrappa K. Comparative study of impedance properties of LiHZn(P2O7), Na2ZnP2O7∙HCl and KHZnP2O7 crystals // Journal of international academic research for multidisciplinary. 2016. V. 4. № 2. P. 329–339.
  3. Voronin V.I., Sherstobitova E.A., Blatov V.A., Shekhtman G.Sh. Lithium-cation conductivity and crystal structure of lithium diphosphate // J. Solid State Chem. 2014. V. 211. P. 170
  4. Saha S., Rousse G., Fauth F., Pomjakushin V., Tarascon J.-M. Influence of Temperature-Driven Polymorphism and Disorder on Ionic Conductivity in Li6Zn(P2O7)2 // Inorg. Chem. 2019 V. 58. № 3. P. 1774.
  5. Kharroubi M., Assad H., Gacem L., Henn F. Study of Dielectric Relaxation Phenomena of Na2ZnP2O7 Diphosphate Glass Dopped with Cobalt (II) By Impedance Spectroscopy // International Journal of Emerging Technology and Advanced Engineering. 2014. V. 4. № 7. P. 49.
  6. Averbuch-Pouchot M.T. Crystal data on Zn3Rb2(P2O7)2 and Co3Rb2(P2O7)2. Crystal structure of Zn3Rb2(P2O7)2 // Zeitschrift fur Kristallographie. 1985. V. 171. P. 113–119.
  7. Caldiño U., Lira A., Meza-Rocha A.N., Camarillo I., Lozada-Morales R. Development of sodium-zinc phosphate glasses doped with Dy3+, Eu3+ and Dy3+/Eu3+ for yellow laser medium, reddish-orange and white phosphor applications // J. Lumin. 2018. V. 194. P. 231.
  8. Soriano-Romero O., Lozada-Morales R., Meza-Rocha A.N., Carmona-Téllez S., Caldiño U., Flores-Desirena B., Palomino-Merino R. Cold bluish white and blue emissions in Cu+-doped zinc phosphate glasses // J. Lumin. 2020. V. 217. 116791.
  9. Shwetha M., Eraiah B. Influence of Dy3+ ions on the physical, thermal, structural and optical properties of lithium zinc phosphate glasses // J. Non-Cryst. Solids. 2021. V. 555. 120622.
  10. Quinn C.J., Beall G.H., Dickenson J.E. Alkali Zinc Pyrophosphate Glasses for Polymer Blends // Bull. Span. Soc. Ceram. Classes. 1992. V. 4. P. 79.
  11. Rivera F.L.F., Velázquez D.Y.M., Aldaya I., Pérez-Sánchez G.G. Characterization of the optical gain in erbium-ytterbium-doped zinc and sodium-zinc phosphate glasses // Opt. Mater. Express. 2022. V. 12. P. 4491–4498.
  12. Khelloufi M., Kharroubi M., Gacem L., Balme S., Assad H. Electrical conductivity and dielectric properties of rare earth ions (Ce3+, Pr3+ and Eu3+) doped in zinc sodium phosphate glass // J. Non-Crystal. Solids. 2021. V. 567. 120933.
  13. Rayan D.A., Elbashar Y.H. Spectroscopic analysis of potassium zinc phosphate glass matrix doped CuO for optical filter applications // J. Opt. 2020. V. 49. P. 564–572.
  14. Langar A., Bouzidi Ch., Elhouichet H., Férid M. Er–Yb codoped phosphate glasses with improved gain characteristics for an efficient 1.55µm broadband optical amplifiers // J. Lumin. 2014. V. 148. P. 249–255.
  15. Liu Q., Dang P., Zhang G., Lian H., Li G., Molokeev M.S., Cheng Z., Lin J. Broad luminescence tuning in Mn2+-doped Rb2Zn3(P2O7)2 via doping level control based on multiple synergies // CrystEngComm. 2022. V. 24. P. 5622–5629.
  16. Zhu Sh.-Y., Zhao D., Liu W. A broad emission band of phosphor Cs2Zn3(P2O7)2:Mn2+ induced by multi-sites of Mn2+ // Inorg. Chem. Comm. 2023. V. 150. 110397.
  17. Rim B., Lakhdar G., Bachir B., Hassan A.A., Mohamed Toufik S., Boubakeur S., Elhadj Ahmed G., Ahmed G., Guerbous L. Synthesis and luminescence spectroscopy study of a novel Orange-Red (OR) color emissions phosphor based on Tb3+ ion doped Na2ZnP2O7 // Luminescence. 2021. V. 36. № 2. P. 489.
  18. Bhake A.M., Parauha Y.R., Dhoble S.J. Synthesis and photoluminescence study of Ce3+ ion‑activated Na2ZnP2O7 and Na4P2O7 pyrophosphate phosphors // J. Mater. Sci. – Mater. Electron. 2020. V. 31. P. 548.
  19. Guerbous L., Gacem L. Synthesis and Luminescent Properties of Eu3+ Doped Crystalline Diphosphate Na2ZnP2O7 // Acta Phys. Pol., A. 2012. V. 122. № 3. P. 535.
  20. Amara A., Gacem L., Gueddim A., Belbal R., Soltani M.T., Guerbous L. Luminescence properties of Cr3+ ions in Na2ZnP2O7 crystal // Physica B. 2018. V. 545. P. 408.
  21. Fhoula M., Dammak M. Optical spectroscopy of thermal stable Na2ZnP2O7:Sm3+/(Li+, K+) phosphors // J. Lumin. 2019. V. 210. P. 1.
  22. Belbal R., Gacem L., Bentria B. Blue emission of Co2+ in K2ZnP2O7 phosphors // Inorg. Chem. Commun. 2018. V. 97. P. 39.
  23. Zhao S.G., Yang X.Y., Yang Y., Kuang X.J., Lu F.Q., Shan P., Sun Z.H., Lin Z.S., Hong M.C., Luo J.H. Noncentrosymmetric RbNaMgP2O7 with Unprecedented Thermo-Induced Enhancement of Second Harmonic Generation // J. Am. Chem. Soc. 2018. V. 140. P. 1592–1595.
  24. Zhao S.G., Gong P.F., Luo S.Y., Bai L., Lin Z.S., Ji C.M., Chen T.L., Hong M.C., Luo J.H. Deep-ultraviolet transparent phosphates RbBa2(PO3)5 and Rb2Ba3(P2O7)2 show nonlinear optical activity from condensation of [PO4]3– Units // J. Am. Chem. Soc. 2014. V. 136. P. 8560–8563.
  25. Wu H., Liu S., Cheng S., Yu H., Hu Zh., Wang J., Wu Y. Syntheses, characterization, and theoretical calculation of Rb2Mg3(P2O7)2 polymorphs with deep-ultraviolet cutoff edges // Sci. China Mater. 2020. V. 63. P. 593–601.
  26. Song Z., Yu H., Wu H., Hu Z., Wang J., Wu Y. Syntheses, structures and characterization of non-centrosymmetric Rb2Zn3(P2O7)2 and centrosymmetric Cs2M3(P2O7)2 (M = Zn, Mg) // Inorg. Chem. Front. 2020. V. 7. P. 3482–3490.
  27. Yu H., Young J., Wu H., Zhang W., Rondinelli J.M., Halasyamani P.Sh. M4Mg4(P2O7)3 (M = K, Rb): Structural Engineering of Pyrophosphates for Nonlinear Optical Applications // Chem. Mater. 2017. V. 29. P. 1845−1855.
  28. Srivastava A.M., Comanzo H.A., Camardello S., Chanry S.B., Aycibin M., Happek U. Unusual luminescence of octahedrally coordinated divalent europium ion in Cs2M2+P2O7 (M2+ = Ca, Sr) // J. Lumin. 2009. V. 129. P. 919–925.
  29. Лапшин А.Е., Петрова М.А. Синтез и кристаллическая структура низкотемпературной модификации LiKZnP2O7 // Физика и химия стекла. 2009. Т. 35. № 6. С. 841–847. [Lapshin A.E., Petrova M.A., Synthesis and crystal structure of the low-temperature modification of lithium potassium zinc diphosphate LiKZnP2O7 // Glass. Phys. Chem. 2009. V. 35. P. 637–642]
  30. Петрова М.А., Синельщикова О.Ю. Триангуляция в системе Li2ZnP2O7–Na2ZnP2O7–K2ZnP2O7 // Журн. Неорганической Химии. 2022. Т. 67. № 2. С. 216–223. [Petrova M.A., Sinel’shchikova O.Yu. Triangulation in the Li2ZnP2O7–Na2ZnP2O7–K2ZnP2O7 System // Russian Journal of Inorganic Chemistry. 2022. V. 67. № 2. P. 209–215.]
  31. Song H., Zhang Sh., Li Y., Liu W., Lin Z., Yao J., Zhang G. Syntheses, crystal structures, and characterizations of three new pyrophosphates CsNaZnP2O7, RbNaZnP2O7, and RbLiMgP2O7 // Solid State Sciences. 2019. V. 95. 105940.
  32. Ji L.N., Cai G.M., Li J.B., Luo J., Liang J.K., Zhang J.Y., Liu Y.H., Rao G.H., Chen X.L. Crystal structure and thermal properties of compound K2Zn3(P2O7)2 // Powder Diffr. 2008. V. 23. № 4. P. 317–322.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (548KB)
3.

Download (152KB)
4.

Download (45KB)
5.

Download (230KB)
6.

Download (69KB)
7.

Download (66KB)

Copyright (c) 2023 Д.И. Цыганкова, О.Ю. Синельщикова, В.Л. Уголков

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».