Taxonomic diversity and enzyme systems of hydrocarbon-oxidizing bacteria in the marine environment
- Autores: Bogatyrenko E.A.1, Kim A.V.1,2, Dashkov D.V.1, Ammosova D.A.1
-
Afiliações:
- Far Eastern Federal University (FEFU)
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch, Russian Academy of Sciences (FSC EATB FEB RAS)
- Edição: Volume 51, Nº 5 (2025)
- Páginas: 239-251
- Seção: ОБЗОР
- ##submission.datePublished##: 15.09.2025
- URL: https://journal-vniispk.ru/0134-3475/article/view/352480
- DOI: https://doi.org/10.31857/S0134347525050015
- ID: 352480
Citar
Resumo
Sobre autores
E. Bogatyrenko
Far Eastern Federal University (FEFU)
Email: bogatyrenko.ea@dvfu.ru
Vladivostok, 690922 Russia
A. Kim
Far Eastern Federal University (FEFU); Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch, Russian Academy of Sciences (FSC EATB FEB RAS)Vladivostok, 690922 Russia$ Vladivostok, 690022 Russia
D. Dashkov
Far Eastern Federal University (FEFU)Vladivostok, 690922 Russia
D. Ammosova
Far Eastern Federal University (FEFU)Vladivostok, 690922 Russia
Bibliografia
- Богатыренко Е.А., Ким А.В., Дункай Т.И. и др. Таксономическое разнообразие культивируемых углеводородокисляющих бактерий в Японском море // Биол. моря. 2021. Т. 47. № 3. С. 232–239.
- Богатыренко Е.А., Ким А.В., Полоник Н.С. и др. Психротрофные углеводородокисляющие бактерии, выделенные из донных осадков залива Петра Великого Японского моря // Океанология. 2022. Т. 62. № 3. С. 439–450.
- Бузолева Л.С., Богатыренко Е.А., Репина М.А., Белькова Н.Л. Изучение нефтеокисляющей способности бактерий, выделенных из прибрежных вод юга о. Сахалин // Микробиология. 2017. Т. 86. С. 317–325.
- Abe M., Kanaly R.A., Mori J.F. Genomic analysis of a marine alphaproteobacterium Sagittula sp. strain MA-2 that carried eight plasmids // Mar. Genomics. 2023. V. 72. Art. ID 101070.
- Abe M., Sakai M., Kanaly R.A., Mori J.F. Identification of a putative novel polycyclic aromatic hydrocarbon-biodegrading gene cluster in a marine Roseobacteraceae bacterium Sagittula sp. MA-2 // Microbiol. Spectrum. 2025. V. 13. № 1. Art. ID e0107424.
- Agrawal A., Gieg L.M. In situ detection of anaerobic alkane metabolites in subsurface environments // Front. Microbiol. 2013. V. 4. Art. ID 140.
- Bihari Z., Szvetnik A., Szabó Z. et al. Functional analysis of long-chain n-alkane degradation by Dietzia spp. // FEMS Microbiol. Lett. 2011. V. 316. P. 100–107.
- Callaghan A.V. Enzymes involved in the anaerobic oxidation of n-alkanes: from methane to long-chain paraffins // Front. Microbiol. 2013. V. 4. Art. ID 89.
- Callaghan A.V., Gieg L.M., Kropp K.G. et al. Comparison of mechanisms of alkane metabolism under sulfate-reducing conditions among two bacterial isolates and a bacterial consortium // Appl. Environ. Microbiol. 2006. V. 72. № 6. P. 4274–4282.
- Chen S.C., Musat F., Richnow H.H., Krüger M. Microbial diversity and oil biodegradation potential of northern Barents Sea sediments // J. Environ. Sci. (China). 2024. V. 146. P. 283–297.
- Das N., Das A., Das S. et al. Petroleum hydrocarbon catabolic pathways as targets for metabolic engineering strategies for enhanced bioremediation of crude-oil-contaminated environments // Fermentation. 2023. V. 9. Art. ID 196.
- Dell’Anno A., Beolchini F., Gabellini M. et al. Bioremediation of petroleum hydrocarbons in anoxic marine sediments: consequences on the speciation of heavy metals // Mar. Pollut. Bull. 2009. V. 58. P. 1808–1814.
- Dell’Anno F., Brunet C., van Zyl L.J. et al. Degradation of hydrocarbons and heavy metal reduction by marine bacteria in highly contaminated sediments // Microorganisms. 2020. V. 8. Art. ID 1402.
- Djahnit N., Chernai S., Catania V. et al. Isolation, characterization and determination of biotechnological potential of oil-degrading bacteria from Algerian centre coast // J. App. Microbiol. 2019. V. 126. № 3. P. 780–795.
- Dong X., Greening C., Rattray J.E. et al. Metabolic potential of uncultured bacteria and archaea associated with petroleum seepage in deep-sea sediments // Nat. Commun. 2019. V. 10. № 1. Art. ID 1816.
- Fakhrzadegan I., Hassanshahian M., Askari Hesni M., Saadatfar A. A study of crude oil-degrading bacteria from mangrove forests in the Persian Gulf // Mar. Ecol. 2019. V. 40. Art. ID e12544.
- Feng L., Wang W., Cheng J. et al. Genome and proteome of long-chain alkane degrading Geobacillus thermodenitrificans NG80-2 isolated from a deep-subsurface oil reservoir // Proc. Natl. Acad. Sci. U.S.A. 2007. V. 104. № 13. P. 5602–5607.
- Ganesan M., Mani R., Sai S. et al. Bioremediation by oil degrading marine bacteria: an overview of supplements and pathways in key processes // Chemosphere. 2022. V. 303. Pt. 1. Art. ID 134956.
- Gutierrez T., Biddle J.F., Teske A., Aitken M.D. Cultivation-dependent and cultivation-independent characterization of hydrocarbon-degrading bacteria in Guaymas Basin sediments // Front. Microbiol. 2015. V. 6. Art. ID 695.
- Gutierrez T., Morris G., Ellis D. et al. Hydrocarbon-degradation and MOS-formation capabilities of the dominant bacteria enriched in sea surface oil slicks during the Deepwater Horizon oil spill // Mar. Pollut. Bull. 2018. V. 135. P. 205–215.
- Hassanshahian M., Emtiazi G., Cappello S. Isolation and characterization of crude-oil-degrading bacteria from the Persian Gulf and the Caspian Sea // Mar. Pollut. Bull. 2012. V. 64. № 1. P. 7–12.
- Jaekel U., Zedelius J., Wilkes H., Musat F. Anaerobic degradation of cyclohexane by sulfate-reducing bacteria from hydrocarbon-contaminated marine sediments // Front. Microbiol. 2015. V. 6. Art. ID 116.
- Ji Y., Mao G., Wang Y., Bartlam M. Structural insights into diversity and n-alkane biodegradation mechanisms of alkane hydroxylases // Front. Microbiol. 2013. V. 4. Art. ID 58.
- Kloos K., Munch J.C., Schloter M. A new method for the detection of alkane-monooxygenase homologous genes (alkB) in soils based on PCR-hybridization // J. Microbiol. Methods. 2006. V. 66. № 3. P. 486–496.
- Li X., Cao X., Zhang Z. et al. Mechanism of phenanthrene degradation by the halophilic Pelagerythrobacter sp. N7 // Chemosphere. 2024. V. 350. Art. ID 141175.
- Ma M., Gao W., Li Q. et al. Biodiversity and oil degradation capacity of oil-degrading bacteria isolated from deep-sea hydrothermal sediments of the South Mid-Atlantic Ridge // Mar. Pollut. Bull. 2021. V. 171. Art. ID 112770.
- Maeng J.H., Sakai Y., Tani Y., Kato N. Isolation and characterization of a novel oxygenase that catalyzes the first step of n-alkane oxidation in Acinetobacter sp. strain M-1 // J. Bacteriol. 1996. V. 178. № 13. P. 3695–3700.
- Mahjoubi M., Aliyu H., Cappello S. et al. The genome of Alcaligenes aquatilis strain BU33N: insights into hydrocarbon degradation capacity // PloS One. 2019. V. 14. № 9. Art. ID e0221574.
- Mangwani N., Kumari S., Das S. Involvement of quorum sensing genes in biofilm development and degradation of polycyclic aromatic hydrocarbons by a marine bacterium Pseudomonas aeruginosa N6P6 // Appl. Microbiol. Biotechnol. 2015. V. 99. № 23. P. 10283–10297.
- Matturro B., Di Franca M.L., Tonanzi B. et al. Enrichment of aerobic and anaerobic hydrocarbon-degrading bacteria from multicontaminated marine sediment in Mar Piccolo site (Taranto, Italy) // Microorganisms. 2023. V. 11. № 11. Art. ID 2782.
- McDonald I.R., Miguez C.B., Rogge G. et al. Diversity of soluble methane monooxygenase-containing methanotrophs isolated from polluted environments // FEMS Microbiol. Lett. 2006. V. 255. № 2. P. 225–232.
- Meckenstock R.U., Safinowski M., Griebler C. Anaerobic degradation of polycyclic aromatic hydrocarbons // FEMS Microbiol. Ecol. 2004. V. 49. P. 27–36.
- Moody J.D., Freeman J.P., Fu P.P., Cerniglia C.E. Degradation of benzo[a]pyrene by Mycobacterium vanbaalenii PYR-1 // Appl. Environ. Microbiol. 2004. V. 70. № 1. P. 340–345.
- Murphy S.M.C., Bautista M.A., Cramm M.A., Hubert C.R.J. Diesel and crude oil biodegradation by cold-adapted microbial communities in the Labrador Sea // Appl. Environ. Microbiol. 2021. V. 87. № 20. Art. ID e0080021.
- Nagy K.K., Takács K., Németh I. et al. Novel enzymes for biodegradation of polycyclic aromatic hydrocarbons identified by metagenomics and functional analysis in short-term soil microcosm experiments // Sci. Rep. 2024. V. 14. Art. ID 11608.
- Nie Y., Chi C.Q., Fang H. et al. Diverse alkane hydroxylase genes in microorganisms and environments // Sci. Rep. 2014. V. 4. Art. ID 4968.
- Rabus R., Boll M., Heider J. et al. Anaerobic microbial degradation of hydrocarbons: from enzymatic reactions to the environment // J. Mol. Microbiol. Biotechnol. 2016. V. 26. № 1–3. P. 5–28.
- Rockne K.J., Chee-Sanford J.C., Sandford R.A. et al. Anaerobic naphthalene degradation by microbial pure cultures under nitrate-reducing conditions // Appl. Environ. Microbiol. 2000. V. 66. P. 1595–1601.
- Rockne K.J., Strand S.E. Anaerobic biodegradation of naphthalene, phenanthrene, and biphenyl by a denitrifying enrichment culture // Water Res. 2001. V. 35. P. 291–299.
- Rojo F. Degradation of alkanes by bacteria // Environ. Microbiol. 2009. V. 11. P. 2477–2490.
- Sakshi, Haritash A.K. A comprehensive review of metabolic and genomic aspects of PAH-degradation // Arch. Microbiol. 2020. V. 202. P. 2033–2058.
- Sazonova O.I., Ivanova A.A., Delegan Y.A. et al. Characterization and genomic analysis of the naphthalene-degrading Delftia tsuruhatensis ULwDis3 isolated from seawater // Microorganisms. 2023. V. 11. Art. ID 1092.
- Shahsavari E., Schwarz A., Aburto-Medina A., Ball A.S. Biological degradation of polycyclic aromatic compounds (PAHs) in soil: a current perspective // Curr. Pollut. Rep. 2019. V. 5. P. 84–92.
- Siddique T., Penner T., Semple K., Foght J.M. Anaerobic biodegradation of longer-chain n-alkanes coupled to methane production in oil sands tailings // Environ. Sci. Technol. 2011. V. 45. № 13. P. 5892–5899.
- Sinha R.K., Krishnan K.P., Kurian P.J. Complete genome sequence and comparative genome analysis of Alcanivorax sp. IO_7, a marine alkane-degrading bacterium isolated from hydrothermally-influenced deep seawater of Southwest Indian Ridge // Genomics. 2021. V. 113. P. 884–891.
- Stauffert M., Cravo-Laureau C., Duran R. Structure of hydrocarbonoclastic nitrate-reducing bacterial communities in bioturbated coastal marine sediments // FEMS Microbiol. Ecol. 2014. V. 89. P. 580–593.
- Tani A., Ishige T., Sakai Y., Kato N. Gene structures and regulation of the alkane hydroxylase complex in Acinetobacter sp. strain M-1 // J. Bacteriol. 2001. V. 183. № 5. P. 1819–1823.
- Throne-Holst M., Wentzel A., Ellingsen T.E. et al. Identification of novel genes involved in long-chain n-alkane degradation by Acinetobacter sp. strain DSM 17874 // Appl. Environ. Microbiol. 2007. V. 73. № 10. P. 3327–3332.
- Tsai J.C., Kumar M., Lin J.G. Anaerobic biotransformation of fluorene and phenanthrene by sulfate-reducing bacteria and identification of biotransformation pathway // J. Hazard. Mater. 2009. V. 164. P. 847–855.
- van Beilen J.B., Funhoff E.G. Alkane hydroxylases involved in microbial alkane degradation // Appl. Microbiol. Biotechnol. 2007. V. 74. № 1. P. 13–21.
- van Beilen J.B., Kingma J., Witholt B. Substrate specificity of the alkane hydroxylase of Pseudomonas oleovorans GPo1 // Enzyme Microb. Technol. 1994. V. 16. P. 904–911.
- van Beilen J.B., Li Z., Duetz W.A. et al. Diversity of alkane hydroxylase systems in the environment // Oil Gas Sci. Technol. 2003. V. 58. № 4. P. 427–440.
- Vergeynst L., Greer C.W., Mosbech A. et al. Biodegradation, photo-oxidation, and dissolution of petroleum compounds in an Arctic fjord during summer // Environ. Sci. Technol. 2019. V. 53. № 21. P. 12197–12206.
- Wang W., Shao Z. Diversity of flavin-binding monooxygenase genes (almA) in marine bacteria capable of degradation long-chain alkanes // FEMS Microbiol. Ecol. 2012. V. 80. P. 523–533.
- Wang W., Zhong R., Shan D., Shao Z. Indigenous oil-degrading bacteria in crude oil-contaminated seawater of the Yellow sea, China // Appl. Microbiol. Biotechnol. 2014. V. 98. № 16. P. 7253–7269.
- Yakimov M.M., Timmis K.N., Golyshin P.N. Obligate oil-degrading marine bacteria // Curr. Opin. Biotechnol. 2007. V. 18. № 3. P. 257–266.
- Zenati B., Chebbi A., Badis A. et al. A non-toxic microbial surfactant from Marinobacter hydrocarbonoclasticus SdK644 for crude oil solubilization enhancement // Ecotoxicol. Environ. Saf. 2018. V. 154. P. 100–107.
- Zhang X.X., Cheng S.P., Zhu C.J., Sun S.L. Microbial PAH-degradation in soil: degradation pathways and contributing factors // Pedosphere. 2006. V. 16. № 5. P. 555–565.
Arquivos suplementares


