Polylogarithms and the Asymptotic Formula for the Moments of Lebesgue’s Singular Function
- Authors: Timofeev E.A.1
-
Affiliations:
- Demidov Yaroslavl State University
- Issue: Vol 51, No 7 (2017)
- Pages: 634-638
- Section: Article
- URL: https://journal-vniispk.ru/0146-4116/article/view/175279
- DOI: https://doi.org/10.3103/S0146411617070203
- ID: 175279
Cite item
Abstract
Recall that Lebesgue’s singular function L(t) is defined as the unique solution to the equation L(t) = qL(2t) + pL(2t − 1), where p, q > 0, q = 1 − p, p ≠ q. The variables Mn = ∫01tndL(t), n = 0,1,… are called the moments of the function The principal result of this work is \({M_n} = {n^{{{\log }_2}p}}{e^{ - \tau (n)}}(1 + O({n^{ - 0.99}}))\), where the function τ(x) is periodic in log2x with the period 1 and is given as \(\tau (x) = \frac{1}{2}1np + \Gamma '(1)lo{g_2}p + \frac{1}{{1n2}}\frac{\partial }{{\partial z}}L{i_z}( - \frac{q}{p}){|_{z = 1}} + \frac{1}{{1n2}}\sum\nolimits_{k \ne 0} {\Gamma ({z_k})L{i_{{z_k} + 1}}( - \frac{q}{p})} {x^{ - {z_k}}}\), \({z_k} = \frac{{2\pi ik}}{{1n2}}\), k ≠ 0. The proof is based on poissonization and the Mellin transform.
About the authors
E. A. Timofeev
Demidov Yaroslavl State University
Author for correspondence.
Email: timofeevea@gmail.com
Russian Federation, Yaroslavl, 150003
Supplementary files
