Difference Approximations of a Reaction–Diffusion Equation on Segments


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The system of phase differences for a chain of diffuse weakly coupled oscillators on a stable integral manifold is constructed and analyzed. It is shown (by means of numerical methods) that Lyapunov dimension growth is close to linear as the number of oscillators in the chain increases. Extensive computations performed for the difference model of the Ginsburg–Landau equation illustrate this result and determine the applicability limits for asymptotic methods.

Sobre autores

S. Glyzin

Demidov Yaroslavl State University

Autor responsável pela correspondência
Email: glyzin@uniyar.ac.ru
Rússia, Yaroslavl, 150003

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Allerton Press, Inc., 2018