Using Neural Networks to Detect Internal Intruders in VANETs
- Authors: Ovasapyan T.D.1, Moskvin D.A.1, Kalinin M.O.1
-
Affiliations:
- Peter the Great St.Petersburg Polytechnic University
- Issue: Vol 52, No 8 (2018)
- Pages: 954-958
- Section: Article
- URL: https://journal-vniispk.ru/0146-4116/article/view/175682
- DOI: https://doi.org/10.3103/S0146411618080199
- ID: 175682
Cite item
Abstract
This article considers ensuring protection of Vehicular Ad-Hoc Networks (VANET) against malicious nodes. Characteristic performance features of VANETs and threats are analyzed, and current attacks identified. The proposed approach to security provision relies on radial basis neural networks and makes it possible to identify malicious nodes by indicators of behavior.
Keywords
About the authors
T. D. Ovasapyan
Peter the Great St.Petersburg Polytechnic University
Author for correspondence.
Email: otd@ibks.spbstu.ru
Russian Federation, St. Petersburg, 195251
D. A. Moskvin
Peter the Great St.Petersburg Polytechnic University
Email: max@ibks.spbstu.ru
Russian Federation, St. Petersburg, 195251
M. O. Kalinin
Peter the Great St.Petersburg Polytechnic University
Author for correspondence.
Email: max@ibks.spbstu.ru
Russian Federation, St. Petersburg, 195251
Supplementary files
