Expansion of Self-Similar Functions in the Faber–Schauder System
- Авторлар: Timofeev E.A.1
-
Мекемелер:
- Demidov Yaroslavl State University
- Шығарылым: Том 51, № 7 (2017)
- Беттер: 586-591
- Бөлім: Article
- URL: https://journal-vniispk.ru/0146-4116/article/view/175243
- DOI: https://doi.org/10.3103/S014641161707032X
- ID: 175243
Дәйексөз келтіру
Аннотация
Let Ω = AN be a space of right-sided infinite sequences drawn from a finite alphabet A = {0,1}, N = {1,2,…}. Let ρ(x, y)Σk=1∞|xk − yk|2−k be a metric on Ω = AN, and μ the Bernoulli measure on Ω with probabilities p0, p1 > 0, p0 + p1 = 1. Denote by B(x,ω) an open ball of radius r centered at ω. The main result of this paper \(\mu (B(\omega ,r))r + \sum\nolimits_{n = 0}^\infty {\sum\nolimits_{j = 0}^{{2^n} - 1} {{\mu _{n,j}}} } (\omega )\tau ({2^n}r - j)\), where τ(x) = 2min {x,1 − x}, 0 ≤ x ≤ 1, (τ(x) = 0, if x < 0 or x > 1 ), \({\mu _{n,j}}(\omega ) = (1 - {p_{{\omega _{n + 1}}}})\prod _{k = 1}^n{p_{{\omega _k}}} \oplus {j_k}\), \(j = {j_1}{2^{n - 1}} + {j_2}{2^{n - 2}} + ... + {j_n}\). The family of functions 1, x, τ(2nr − j), j = 0,1,…, 2n − 1, n = 0,1,…, is the Faber–Schauder system for the space C([0,1]) of continuous functions on [0, 1]. We also obtain the Faber–Schauder expansion for Lebesgue’s singular function, Cezaro curves, and Koch–Peano curves. Article is published in the author’s wording.
Негізгі сөздер
Авторлар туралы
E. Timofeev
Demidov Yaroslavl State University
Хат алмасуға жауапты Автор.
Email: timofeevEA@gmail.com
Ресей, Yaroslavl, 150003
Қосымша файлдар
