Synthetic Earthquake Catalog for the Eastern Sector of the Arctic Zone of the Russian Federation
- Authors: Shebalin P.N.1,2, Gvishiani A.D.1,3, Malyutin P.A.2, Grekov E.M.2, Antipova A.O.1,2, Vorobyova I.A.1,2, Dzeboev B.A.1,3, Dzeranov B.V.1
-
Affiliations:
- Geophysical Center of the Russian Academy of Sciences
- Institute of Earthquake Prediction Theory and Mathematical Geophysics of the Russian Academy of Sciences
- Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences
- Issue: No 2 (2025)
- Pages: 3-19
- Section: Articles
- URL: https://journal-vniispk.ru/0203-0306/article/view/294629
- DOI: https://doi.org/10.31857/S0203030625010012
- EDN: https://elibrary.ru/GJAVEQ
- ID: 294629
Cite item
Abstract
The synthetic earthquake catalog for the Eastern sector of the Arctic zone of the Russian Federation is constructed in the paper. It reproduces and models the key properties of the catalog of actual earthquakes in the region. At the regional level, the Gutenberg–Richter magnitude frequency law for earthquakes of different magnitudes is satisfied both for the catalog as a whole and for the catalog of main shocks, in which aftershocks are removed. Local values of the parameters of this law are reproduced. The synthetic catalog includes aftershocks, while local ratios of the number of aftershocks and the total number of earthquakes, estimated from the catalog of actual events, are observed. The results of strong earthquake-prone areas recognition using the FCAZ method are used as a model of the spatial distribution of the strongest earthquakes in the region (М ≥ 5.5). Preliminary calculations of the normative intensity were carried out to compare three variants of the synthetic catalog (full model, without aftershocks, without FCAZ recognition results and aftershocks).
About the authors
P. N. Shebalin
Geophysical Center of the Russian Academy of Sciences; Institute of Earthquake Prediction Theory and Mathematical Geophysics of the Russian Academy of Sciences
Author for correspondence.
Email: p.n.shebalin@gmail.com
Russian Federation, 3, Molodezhnaya St., Moscow, 119296; 84/32, Profsoyuznaya St., Moscow, 117997
A. D. Gvishiani
Geophysical Center of the Russian Academy of Sciences; Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences
Email: p.n.shebalin@gmail.com
Russian Federation, 3, Molodezhnaya St., Moscow, 119296; Bldg. 1, 10, Bolshaya Gruzinskaya St., Moscow, 123242
P. A. Malyutin
Institute of Earthquake Prediction Theory and Mathematical Geophysics of the Russian Academy of Sciences
Email: p.n.shebalin@gmail.com
Russian Federation, 84/32, Profsoyuznaya St., Moscow, 117997
E. M. Grekov
Institute of Earthquake Prediction Theory and Mathematical Geophysics of the Russian Academy of Sciences
Email: p.n.shebalin@gmail.com
Russian Federation, 84/32, Profsoyuznaya St., Moscow, 117997
A. O. Antipova
Geophysical Center of the Russian Academy of Sciences; Institute of Earthquake Prediction Theory and Mathematical Geophysics of the Russian Academy of Sciences
Email: p.n.shebalin@gmail.com
Russian Federation, 3, Molodezhnaya St., Moscow, 119296; 84/32, Profsoyuznaya St., Moscow, 117997
I. A. Vorobyova
Geophysical Center of the Russian Academy of Sciences; Institute of Earthquake Prediction Theory and Mathematical Geophysics of the Russian Academy of Sciences
Email: p.n.shebalin@gmail.com
Russian Federation, 3, Molodezhnaya St., Moscow, 119296; 84/32, Profsoyuznaya St., Moscow, 117997
B. A. Dzeboev
Geophysical Center of the Russian Academy of Sciences; Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences
Email: p.n.shebalin@gmail.com
Russian Federation, 3, Molodezhnaya St., Moscow, 119296; Bldg. 1, 10, Bolshaya Gruzinskaya St., Moscow, 123242
B. V. Dzeranov
Geophysical Center of the Russian Academy of Sciences
Email: p.n.shebalin@gmail.com
Russian Federation, 3, Molodezhnaya St., Moscow, 119296
References
- Воробьева И.А., Шебалин П.Н., Гвишиани А.Д., Дзебоев Б.А., Дзеранов Б.В. Параметры сейсмического режима восточного сектора Арктической зоны Российской Федерации // Физика Земли. 2024. № 5. С. 3–21.
- Гвишиани А.Д., Соловьев А.А., Дзебоев Б.А. Проблема распознавания мест возможного возникновения сильных землетрясений: актуальный обзор // Физика Земли. 2020. № 1. С. 5–29. https://doi.org/10.31857/S0002333720010044
- Гельфанд И.М., Губерман Ш.А., Извекова М.Л., Кейлис-Борок В.И., Ранцман Е.Я. О критериях высокой сейсмичности // Докл. АН СССР. 1972. Т. 202. № 6. С. 1317–1320.
- Имаев В.С., Имаева Л.П., Козьмин Б.М. Сильное Улахан-Чистайское землетрясение 20 января 2013 года (Мs = 5.7) в зоне влияния системы разлома Улахан на Северо-Востоке России // Вестник Санкт-Петербургского университета. Науки о Земле. 2020. Т. 65. Вып. 4. С. 740–759. https://doi.org/10.21638/spbu07.2020.408
- Комплект карт общего сейсмического районирования территории Российской Федерации – ОСР-97. Масштаб: 1 : 8 000 000 / Главные редакторы: В.Н. Страхов, В.И. Уломов. М.: Объединенный институт физики Земли им. О.Ю. Шмидта РАН, 1999. 4 л.
- Крушельницкий К.В., Шебалин П.Н., Воробьева И.А., Селюцкая О.В., Антипова А.О. Границы применимости закона Гутенберга–Рихтера в задачах оценки сейсмической опасности и риска // Физика Земли. 2024. № 5. С. 69‒84.
- Малютин П.А., Скоркина А.А., Воробьева И.А., Баранов С.В., Маточкина С.Д., Молокова А.П., Шебалин П.Н. Характерное распределение глубин коровых землетрясений Южной Сибири // Физика Земли. 2024. № 4. C. 50–63. https://doi.org/10.31857/S0002333724040046
- Новый каталог сильных землетрясений на территории СССР с древнейших времен до 1975 г. / Ред. Н.В. Кондорская, Н.В. Шебалин. М.: Наука, 1977. 536 с.
- Пояснительная записка к комплекту карт ОСР-2016 и список населенных пунктов, расположенных в сейсмоактивных зонах / Гл. ред. В.И. Уломов, М.И. Богданов // Инженерные изыскания. 2016. № 7. С. 49–60.
- Ризниченко Ю.В. Сейсмический режим и сейсмическая активность // Сейсмическое районирование территории СССР / Под ред. В.И. Бунэ, Г.П. Горшкова. М.: Наука, 1980. С. 47–58.
- Шебалин Н.В. Количественная макросейсмика (фрагменты незавершенной монографии) // Магнитное поле Земли: математические методы описания. Проблемы макросейсмики. М.: ГЕОС, 2003. (Вычислительная сейсмология, Вып. 34). С. 57–200.
- Шебалин П.Н. Современные подходы к сокращению ущерба от землетрясений // Вестник РАН. 2024. Т. 94. № 8. С. 738‒748.
- Шебалин П.Н., Тихоцкий С.А., Коваленко А.А. О совершенствовании подходов к сокращению ущерба от землетрясений // Вестник РАН. 2024. Т. 94. № 10. С. 900‒909.
- Шебалин П.Н., Гвишиани А.Д., Дзебоев Б.А., Скоркина А.А. Почему необходимы новые подходы к оценке сейсмической опасности? // Доклады РАН. Науки о Земле. 2022. Т. 507. № 1. С. 91–97. https://doi.org/10.31857/S2686739722601466
- Akinci A., Moschetti M.P., Taroni M. Ensemble smoothed seismicity models for the new Italian probabilistic seismic hazard map // Seismological Research Letters. 2018. V. 89. № 4. P. 1277–1287. https://doi.org/10.1785/0220180040
- Baiesi M., Paczuski M. Scale-free networks of earthquakes and aftershocks // Physical Review E. 2004. V. 69. Iss. 6. P. 066106-1–066106-8. https://doi.org/10.1103/PhysRevE.69.066106
- Baranov S.V., Gvishiani A.D., Narteau C., Shebalin P.N. Epidemic type aftershock sequence exponential productivity // Russian Journal of Earth Sciences. 2019. V. 19. Iss. 6. ES6003. https://doi.org/10.2205/2019ES000695
- Baranov S.V., Narteau C., Shebalin P.N. Modeling and Prediction of Aftershock Activity // Surveys in Geophysics. 2022. V. 43. P. 437–448. https://doi.org/10.1007/s10712-022-09698-0
- Bender B. Maximum likelihood estimation of b-values for magnitude grouped data // Bulletin of the Seismological Society of America. 1983. V. 73. P. 831–851.
- Chebrov V.N. The Olyutorskii earthquake of April 20, 2006: Organizing surveys, observations, problems, and results // Journal of Volcanology and Seismology. 2010. V. 4. № 2. P. 75–78. https://doi.org/10.1134/S0742046310020016
- Cornell C.A. Engineering seismic risk analysis // Bulletin of the Seismological Society of America. 1968. V. 58. Iss. 5. P. 1583–1606.
- Daragan-Sushchova L.A., Petrov O.V., Sobolev N.N., Daragan-Sushchov Y.I., Grin’ko L.R., Petrovskaya N.A. Geology and tectonics of the northeast Russian Arctic region, based on seismic data // Geotectonics. 2015. V. 49. P. 469–484. https://doi.org/10.1134/S0016852115060023
- Dzeboev B.A., Gvishiani A.D., Agayan S.M., Belov I.O., Karapetyan J.K., Dzeranov B.V., Barykina Y.V. System-Analytical Method of Earthquake-Prone Areas Recognition // Applied Sciences. 2021. V. 11. № 17. 7972. https://doi.org/10.3390/app11177972
- Gardner J.K., Knopoff L. Is the sequence of earthquakes in southern California, with aftershocks removed, Poissonian? // Bulletin of the Seismological Society of America. 1974. V. 64. P. 1363–1367.
- Gerstenberger M.C., Marzocchi W., Allen T., Pagani M., Adams J., Danciu L. et al. Probabilistic seismic hazard analysis at regional and national scales: State of the art and future challenges // Reviews of Geophysics. 2020. V. 58. e2019RG000653.
- https://doi.org/10.1029/2019RG000653
- Giardini D., Grunthal G., Shedlock K.M., Zhang P. The GSHAP Global Seismic Hazard Map // Annali di Geofisica. 1999. V. 42. Iss. 6. P. 1225–1228. https://doi.org/10.4401/ag-3784
- Gutenberg B., Richter C.F. Frequency of earthquakes in California // Bulletin of the Seismological Society of America. 1944. V. 34. № 4. P. 185–188.
- Gvishiani A.D., Vorobieva I.A., Shebalin P.N., Dzeboev B.A., Dzeranov B.V., Skorkina A.A. Integrated earthquake catalog of the Eastern sector of the Russian Arctic // Applied Sciences. 2022a. V. 12. № 10. 5010. https://doi.org/10.3390/app12105010
- Gvishiani A.D., Dzeboev B.A., Dzeranov B.V., Kedrov E.O., Skorkina A.A., Nikitina I.M. Strong Earthquake-Prone Areas in the Eastern Sector of the Arctic Zone of the Russian Federation // Applied Sciences. 2022b. V. 12. № 23. 11990. https://doi.org/10.3390/app122311990
- Helmstetter A., Werner M.J. Adaptive spatiotemporal smoothing of seismicity for long-term earthquake forecasts in California // Bulletin of the Seismological Society of America. 2012. V. 102. № 6. P. 2518–2529. https://doi.org/10.1785/0120120062
- Holschneider M., Narteau C., Shebalin P., Peng Z., Schorlemmer D. Bayesian analysis of the modified Omori law // Journal of Geophysical Research. 2012. V. 117(B6). B06317.
- Imaeva L.P., Imaev V.S., Koz’min B.M. Dynamics of the Zones of Strong Earthquake Epicenters in the Arctic–Asian Seismic Belt // Geosciences. 2019. V. 9. № 4. 168. https://doi.org/10.3390/geosciences9040168
- Kanao M., Suvorov V., Toda S., Tsuboi S. Seismicity, structure and tectonics in the Arctic region // Geoscience Frontiers. 2015. V. 6. Iss. 5. P. 665–677. https://doi.org/10.1016/j.gsf.2014.11.002
- Kossobokov V.G., Mazhkenov S.A. On similarity in the spatial distribution of seismicity // Computational seismology and geodynamics. EOS: Transactions, American Geophysical Union. 1994. V. 1. P. 6–21.
- Lander A.V., Levina V.I., Ivanova E.I. The earthquake history of the Koryak Upland and the aftershock process of the MW 7.6 April 20(21), 2006 Olyutorskii earthquake // Journal of Volcanology and Seismology. 2010. V. 4. № 2. P. 87–100. https://doi.org/10.1134/S074204631002003X
- New Catalog of Strong Earthquakes in the USSR from Ancient Times through 1977. Report SE-31 / Editors-in-Chief N.V. Kondorskaya and N.V. Shebalin. Translated and Published by World Data Center A for Solid Earth Geophysics, EDIS, Boulder, Colorado, July 1982. 608 p.
- Rogozhin E.A., Ovsyuchenko A.N., Marakhanov A.V., Novikov S.S. A geological study of the epicentral area of the April 20(21), 2006 Olyutorskii earthquake // Journal of Volcanology and Seismology. 2010. V. 4. № 2. P. 79–86. https://doi.org/10.1134/S0742046310020028
- Shebalin P., Baranov S. Long-delayed aftershocks in New Zealand and the 2016 M7.8 Kaikoura earthquake // Pure and Applied Geophysics. 2017. V. 174. № 10. P. 3751–3764. https://doi.org/10.1007/s00024-017-1608-9
- Shebalin P.N., Narteau C., Baranov S.V. Earthquake productivity law // Geophysical Journal International. 2020. V. 222. Iss. 2. P. 1264–1269. https://doi.org/10.1093/gji/ggaa252
- Shebalin P., Baranov S., Vorobieva I. Earthquake Productivity Law in a Wide Magnitude Range // Frontiers in Earth Science. 2022. V. 10. 881425. https://doi.org/10.3389/feart.2022.881425
- Shebalin P.N., Baranov S.V., Vorobieva I.A., Grekov E.M., Krushelnitskii K.V., Skorkina A.A., Selyutskaya O.V. Seismicity Modeling in Tasks of Seismic Hazard Assessment // Doklady Earth Sciences. 2024. V. 515. P. 514–525. https://doi.org/10.1134/S1028334X23603115
- Shibaev S.V., Kozmin B.M., Imaev V.S., Imaeva L.P., Petrov A.F., Starkova N.N. The February 14, 2013 Ilin-Tas (Abyi) earthquake (Mw = 6.7), Northeast Yakutia // Russian Journal of Seismology. 2020. V. 2. № 1. P. 92–102. https://doi.org/10.35540/2686-7907.2020.1.09
- Spada M., Wiemer S., Kissling E. Quantifying a potential bias in probabilistic seismic hazard assessment; seismotectonic zonation with fractal properties // Bulletin of the Seismological Society of America. 2011. V. 101. № 6. P. 2694–2711.
- Stock C., Smith E.G.C. Adaptive kernel estimation and continuous probability representation of historical earthquake catalogs // Bulletin of the Seismological Society of America. 2002. V. 92. № 3. P. 904–912. https://doi.org/10.1785/0120000233
- Ulomov V.I. Seismic hazard of Northern Eurasia // Annali di Geofisica. 1999. V. 42. Iss. 6. P. 1023–1038. https://doi.org/10.4401/ag-3785
- Vorobieva I.A., Grekov E.M., Krushelnitskii K.V., Malyutin P.A., Shebalin P.N. High Resolution Seismicity Smoothing Method for Seismic Hazard Assessment // Russian Journal of Earth Sciences. 2024. V. 24. ES1003. https://doi.org/10.2205/2024ES000892
- Vorobieva I.A., Gvishiani A.D., Dzeboev B.A., Dzeranov B.V., Barykina Yu.V., Antipova A.O. Nearest Neighbor Method for Discriminating Aftershocks and Duplicates When Merging Earthquake Catalogs // Frontiers in Earth Science. 2022. V. 10. 820277. https://doi.org/10.3389/feart.2022.820277
- Wells D.L., Coppersmith K.J. New Empirical Relationships among Magnitude, Rupture Length, Rupture width, Rupture Area, and Surface Displacement // Bulletin of the Seismological Society of America. 1994. V. 84. P. 974–1002.
- Wessel P., Luis J.F., Uieda L., Scharroo R., Wobbe F., Smith W.H.F., Tian D. Generic mapping tools version 6 // Geochemistry, Geophysics, Geosystems. 2019. V. 20. P. 5556–5564. https://doi.org/10.1029/2019gc008515
- Wyss M., Nekrasova A., Kossobokov V. Errors in expected human losses due to incorrect seismic hazard estimates // Natural Hazards. 2012. V. 62. Iss. 3. P. 927–935.
- Zaliapin I., Gabrielov A., Wong H., Keilis-Borok V. Clustering analysis of seismicity and aftershock identification // Physical Review Letters. 2008. V. 101. Iss. 1. 018501. https://doi.org/10.1103/PhysRevLett.101.018501
- Zaliapin I., Ben-Zion Y. Earthquake clusters in southern California I: identification and stability // Journal of Geophysical Research. 2013. V. 118. Iss. 6. P. 2847–2864. https://doi.org/10.1002/jgrb.50179
- Zechar J.D., Gerstenberger M.C., Rhoades D.A. Likelihood-based tests for evaluating space–rate–magnitude earthquake forecasts // Bulletin of the Seismological Society of America. 2010. V. 100. № 3. P. 1184–1195. https://doi.org/10.1785/0120090192
- Zelenin E., Bachmanov D., Garipova S., Trifonov V., Kozhurin A. The Active Faults of Eurasia Database (AFEAD): the ontology and design behind the continental-scale dataset // Earth System Science Data. 2022. V. 14. P. 4489–4503. https://doi.org/10.5194/essd-14-4489-2022
- Zhuang J., Ogata Y., Vere-Jones D. Stochastic declustering of space-time earthquake occurrences // Journal of the American Statistical Association. 2002. V. 97. P. 369–380. https://doi.org/10.1198/016214502760046925
Supplementary files
