The Relationship between Magnitudes MLH and MW for the Kuril-Okhotsk Region and its Use for Transit Conversions to Other Magnitudes
- Autores: Safonov D.A.1
-
Afiliações:
- Institute of Marine Geology and Geophysics of the Far Eastern Branch of the Russian Academy of Sciences
- Edição: Nº 2 (2025)
- Páginas: 20-37
- Seção: Articles
- URL: https://journal-vniispk.ru/0203-0306/article/view/294630
- DOI: https://doi.org/10.31857/S0203030625010023
- EDN: https://elibrary.ru/GIWJWF
- ID: 294630
Citar
Resumo
In order to unify the earthquake catalogue of the Kuril-Okhotsk region, the two-segment linear relationship was obtained between the surface wave magnitude MLH of the Sakhalin branch of the GS RAS and the moment magnitude MW of the GCMT and NIED agencies. Comparison with similar formulas based on different catalogs shows that for strong MLH = 6.5–8.1 earthquakes, there is a slight ~ 0.1 excess of the regional magnitude of MLH over the MS. In the interval MLH = 4.0–6.5, the regional magnitude MLH exceeds MS values by 0.2–0.4. The relationships between MLH and ML of the Kamchatka branch of the GS RAS in the region of the middle-northern Kuril Islands, MLH and Mj of the JMA agency for the southern part of the region were obtained. By transit recalculation using the relation MLH (MW), it was possible to repeat the directly obtained dependences with good accuracy. The best result is achieved by taking into account the differences in MW obtained by different agencies.
Palavras-chave
Sobre autores
D. Safonov
Institute of Marine Geology and Geophysics of the Far Eastern Branch of the Russian Academy of Sciences
Autor responsável pela correspondência
Email: d.safonov@imgg.ru
Rússia, 1B, Nauka St., Yuzhno-Sakhalinsk, 693022
Bibliografia
- Абубакиров И.Р., Гусев А.А., Гусева Е.М., Павлов В.М., Скоркина А.А. Массовое определение моментных магнитуд Mw и установление связи между Mw и ML для умеренных и слабых камчатских землетрясений // Физика Земли. 2018. № 1. С. 37–51.
- Аппаратура и методика сейсмометрических наблюдений в СССР / Ред. З.И. Аранович, Д.П. Кирнос, В.М. Фремд. М.: Наука, 1974. 244 с.
- Ванек И., Затопек А., Карник В., Кондорская Н.В., Ризниченко Ю.В., Саваренский Е.Ф., Соловьев С.Л., Шебалин Н.В. Стандартная шкала магнитуд // Изв. АН СССР. Сер. геофиз. 1962. № 2. С. 153–158.
- Габсатарова И.П., Пойгина С.Г. Унификация сейсмологических каталогов по магнитуде // Землетрясения России в 2022 году. Обнинск: СФ ФИЦ ЕГС РАН, 2024. С. 145–148.
- Горбунова И.В., Захарова А.И., Чепкунас Л.С. Магнитуды MLV и MLH // Магнитуда и энергетическая классификация землетрясений. М.: ИФЗ АН СССР, 1974. Т. 2. С. 87–93.
- Гусев А.А., Мельникова В.Н. Связи между магнитудами – среднемировые и для Камчатки // Вулканология и сейсмология. 1990. № 6. С. 55–63.
- Инструкция о порядке производства и обработки наблюдений на сейсмических станциях Единой системы сейсмических наблюдений СССР / Отв. сост. Н.В. Кондорская, З.И. Аранович, Н.В. Шебалин. М.: Наука, 1982. 273 с.
- Маловичко А.А., Петрова Н.В., Габсатарова И.П., Левина В.И., Михайлова Р.С., Курова А.Д. Сейсмичность Северной Евразии в 2018–2019 гг. // Землетрясения Северной Евразии. 2023. Вып. 26 (2018–2019 гг.). С. 10–38. https://doi.org/10.35540/1818-6254.2023.26.01
- Сафонов Д.А. Переходные соотношения для энергетических характеристик землетрясений Курило-Охотского региона // Вопросы инженерной сейсмологии. 2024. Т. 51. № 2. С. 102–117. https://doi.org/10.21455/VIS2024.2-6
- Сафонов Д.А., Коновалов А.В. Использование программы ISOLA для определения тензора сейсмического момента землетрясений Курило-Охотского и Сахалинского регионов // Тихоокеанская геология. 2017. Т. 36. № 3. С. 102–112.
- Сейсмологический каталог (сеть телесейсмических станций) / ФИЦ ЕГС РАН, http://www.gsras.ru/ftp/Teleseismic_Catalog/ (дата обращения 05.08.2024).
- Соловьев С.Л. Классификации землетрясений по величине их энергии // Тр. Геофиз. института АН СССР. 1955. № 30(157). С. 3–21.
- Соловьев С.Л. О региональных отличиях калибровочной кривой для определения магнитуды землетрясений по поверхностным волнам // Магнитуда и энергетическая классификация землетрясений. М.: ИФЗ АН СССР, 1974. Т. 2. С. 55–59.
- Соловьев С.Л., Соловьева О.Н. Соотношение между энергетическим классом и магнитудой Курильских землетрясений // Физика Земли. 1967. № 2. С. 13–23.
- Федотов С.А. Энергетическая классификация Курило-Камчатских землетрясений и проблема магнитуд. М.: Наука, 1972. 117 с.
- Фокина Т.А., Сафонов Д.А., Костылев Д.В. Сейсмичность Приамурья и Приморья, Сахалина и Курило-Охотского региона в 2018–2019 гг. // Землетрясения Северной Евразии. 2023. Вып. 26 (2018–2019 гг.). С. 154–170. https://doi.org/10.35540/1818-6254.2023.26.01
- Фокина Т.А., Костылев Д.В., Коргун Н.В., Сафонов Д.А. Результаты сейсмического мониторинга различных регионов России. Приамурье и Приморье, Сахалин и Курило-Охотский регион // Землетрясения России в 2022 году. Обнинск: ФИЦ ЕГС РАН, 2024. С. 59–67.
- Халтурин В.И. Соотношения между магнитудными определениями, ожидаемые и наблюдаемые. Магнитуда и энергетическая классификация землетрясений. М.: ИФЗ АН СССР, 1974. Т. 1. С. 145–153.
- Чубарова О.С., Гусев А.А., Викулина С.А. Двадцатисекундная региональная магнитуда MS(20R) для Дальнего Востока России // Сейсмические приборы. 2010. Т. 46. № 3. С. 58‒63.
- Чубарова О.С., Гусев А.А. Региональная шкала магнитуд по поверхностным волнам для землетрясений Дальнего Востока России // Физика Земли. 2017. № 1. С. 60–71. https://doi.org/10.7868/S0002333716060028
- Bondár I., Storchak D.A. Improved location procedures at the International Seismological Centre // Geophys. J. Int. 2011. V. 186. P. 1220–1244. https://doi.org/10.1111/j.1365-246X.2011.05107.x
- Bormann P., Wendt S., Di Giacomo D. Seismic sources and source parameters // New Manual of Seismological Observatory Practice 2 (NMSOP2) / Ed. P. Bormann. Potsdam: Deutsches GeoForschungsZentrum GFZ, 2013. P. 1–259. https://doi.org/10.2312/GFZ.NMSOP-2_ch3
- Bormann P., Wylegalla K. Investigation of the correlation relationships between various kinds of magnitude determination at station Moxa depending on the type of instrument and on the source area // Public. Inst. Geophys. Polish Acad. Sci. 1975. V. 93. P. 160–175 (in German).
- Chebrov V.N., Droznin D.V., Kugaenko Y.A., Levina V.I., Senyukov S.L., Sergeev V.A., Shevchenko Y.V., Yashchuk V.V. The system of detailed seismological observations in Kamchatka in 2011 // J. Volcanology and Seismology. 2013. V. 7. № 1. P. 16–36. https://doi.org/10.1134/S0742046313010028
- Chebrova A.Yu., Chemarev A.S., Matveenko E.A., Chebrov D.V. Seismological data information system in Kamchatka branch of GS RAS: organization principles, main elements and key functions // Geophysical Research. 2020. V. 21. № 3. P. 66–91.
- Cheng J., Rong Y., Magistrale H., Chen G., Xu X. An Mw‐based historical earthquake catalog for Mainland China // Bulletin of the Seismological Society of America. 2017. V. 107. № 5. P. 2490–2500. https//doi.org/10.1785/0120170102
- Das R., Wason H.R., Sharma M.L. Global regression relations for conversion of surface wave and body wave magnitudes to moment magnitude // Nat. Hazards. 2011. V. 59. P. 801–810.
- Di Giacomo D., Bondár I., Storchak D.A., Engdahl E.R., Bormann P., Harris J. ISC-GEM: Global Instrumental Earthquake Catalogue (1900–2009), III. Re-computed MS and mb, proxy MW, final magnitude composition and completeness assessment // Physics of the Earth and Planetary Interiors. 2015. V. 239. P. 33–47. https://doi.org/10.1016/j.pepi.2014.06.005
- Di Giacomo D., Engdahl E.R., Storchak D.A. The ISC-GEM earthquake catalogue (1904–2014): status after the extension project // Earth Syst. Sci. Data. 2018. V. 10. P. 1877–1899. https://doi.org/10.5194/essd-10-1877-2018
- Edwards B., Rietbrock A. A comparative study on attenuation and source-scaling relations in the Kantō, Tokai, and Chubu regions of Japan, using data from Hi-net and KiK-net // Bulletin of the Seismological Society of America. 2009. V. 99. P. 2435–2460. https://doi.org/10.1785/0120080292
- Ekström G., Dziewonski A.M. Evidence of bias in estimations of earthquake size // Nature. 1988. V. 332. P. 319–323.
- [GCMT] The Global Centroid-Moment-Tensor (CMT) Project, www.globalcmt.org (Access date: August 12, 2024).
- Gutenberg B. Amplitudes of surface waves and magnitudes of shallow earthquakes // Bull. Seism. Soc. Am. 1945. V. 35. P. 3–12.
- Hall J. Linear Deming Regression // MATLAB Central File Exchange, https://www.mathworks.com/matlabcentral/fileexchange/33484-linear-deming-regression (Access date: August 5, 2024).
- Hanks T.C., Kanamori H. A moment magnitude scale // J. Geophys. Res. 1979. V. 84(B5). P. 2348–2350.
- [ISC] International Seismological Centre. On-line Bulletin. https://doi.org/10.31905/D808B830
- [JMA] Japan Meteorogical Agency, https://www.jma.go.jp/jma/indexe.html (Access date: August 12, 2024).
- Kanamori H. The energy release in great earthquakes // J. Geophys. Res. 1977. V. 82(20). P. 2981–2987.
- Kanamori H. Magnitude scale and quantification of earthquakes // Tectonophysics. 1983. V. 93. P. 185–199.
- Karnik V. Seismicity of Europe and the Mediterranean. Czech Republic: Geophysical Institute, Academy of Sciences of the Czech Republic, 1996. 28 p.
- Kubo A., Fukuyama E., Kawai H., Nonomura K.I. NIED seismic moment tensor catalogue for regional earthquakes around Japan: quality test and application // Tectonophysics. 2002. V. 356. № 1–3. P. 23–48.
- Lolli B., Gasperini P., Vannucci G. Empirical conversion between teleseismic magnitudes (mb and MS) and moment magnitude (MW) at the Global, Euro-Mediterranean and Italian scale // Geophysical Journal International. 2014. V. 199. № 2. P. 805–828. https://doi.org/10.1093/gji/ggu264
- [NEIC] National Earthquake Information Center (NEIC) / USGS. https://www.usgs.gov/programs/earthquake-hazards/national-earthquake-information-center-neic (Access date: August 5, 2024).
- [NIED] F-net / National Research Institute for Earth Science and Disaster Resilience. http://www.fnet.bosai.go.jp (Access date: July 21, 2024).
- Petrova N.V., Gabsatarova I.P. Depth corrections to surface-wave magnitudes for intermediate and deep earthquakes in the regions of North Eurasia // J. of Seismology. 2020. V. 24. № 1. P. 203–219.
- Scordilis E.M. Empirical Global Relations Converting MS and mb to Moment Magnitude // J. of Seismology. 2006. V. 10. P. 225–236.
- https://doi.org/10.1007/s10950-006-9012-4
- Uchide T., Imanishi K. Underestimation of microearthquake size by the magnitude scale of the Japan Meteorological Agency: Influence on earthquake statistics // J. of Geophysical Research: Solid Earth. 2018. V. 123. P. 606–620. https://doi.org/10.1002/2017JB014697
- Wason H.R., Das R., Sharma M.L. Regression relations for magnitude conversion for the Indian region // Advances in Indian Earthquake Engineering and Seismology: Contributions in Honour of Jai Krishna. Cham: Springer, 2018. P. 55–66.
Arquivos suplementares
