Изучение распределения по размерам термокарстовых озер восточной части Российской Арктики на основе совмещения данных со снимков Sentinel-2 и Канопус-В

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Статья посвящена вопросам дистанционных исследований распределения термокарстовых озер по размерам на территории восточной части Российской Арктики. Исследования проведены на арктических территориях Северо-восточной (Якутия) и Чукотской тундр, представляющих сравнительно однородные по природным свойствам области, называемые здесь экорегионами. Дистанционные исследования распределения термокарстовых озер по площадям проведены с использованием космических снимков с аппаратов Канопус-В и Sentinel-2 (с пространственным разрешением 2.1 и 20 м соответственно), полученных в летние месяцы 2017–2021 гг. Дешифрирование озер проведено с использованием мозаики спутниковых снимков Sentinel-2, обеспечивающей полное покрытие исследуемых территорий, снимков Канопус-В на 12 тестовых участках и средств QGIS 3.22. Кратко изложена методика интеграции (комбинирования) данных со снимков Канопус-В и Sentinel-2 для построения графиков синтезированных гистограмм распределения озер по их размерам. Методика позволила получить гистограммы распределения озер в очень широком диапазоне их размеров от 50 до 108 м2 в исследованных арктических экорегионах. Графики гистограмм демонстрируют сходный характер поведения в обоих экорегионах, проявляющийся в росте числа озер по мере уменьшения их размеров. Показано, что основной вклад в численность озер Северо-восточной тундры дают значительно более крупные озера, чем в Чукотской тундре, что может свидетельствовать о значительном различии геокриологических условий на разных арктических территориях восточной части Российской Арктики. Проведена оценка степени заозеренности территорий. Показано, что заозеренность Северо-восточной тундры в 7 раз выше, чем на исследованных территориях Чукотки.

Об авторах

И. Н. Муратов

Югорский научно-исследовательский институт информационных технологий

Email: yupolishchuk@gmail.com
Россия, Ханты-Мансийск

О. А. Байсалямова

Югорский научно-исследовательский институт информационных технологий

Email: yupolishchuk@gmail.com
Россия, Ханты-Мансийск

Ю. М. Полищук

Югорский научно-исследовательский институт информационных технологий

Автор, ответственный за переписку.
Email: yupolishchuk@gmail.com
Россия, Ханты-Мансийск

Список литературы

  1. Викторов А.С., Капралова В.Н., Орлов Т.В., Трапезникова О.Н., Архипова М.В., Березин П.В., Зверев А.В., Панченко Е.Н., Садков С.А. Закономерности распределения размеров термокарстовых озер // Докл. АН. 2017. Т. 474. № 5. С. 625–627.
  2. Котляков В.М., Хаин В.Е., Гуцуляк В.Н., Данилов А.И. АРКТИКА // Большая российская энциклопедия. Электронная версия (2020). URL: https://bigenc.ru/geography/text/3452274 Дата обращения: 15.06.2022.
  3. Полищук Ю.М., Богданов А.Н., Брыксина Н.А., Муратов И.Н., Полищук В.Ю. Интеграция космических снимков сверхвысокого и среднего разрешения для построения гистограмм распределения площадей термокарстовых озер в расширенном диапазоне их размеров // Современные проблемы дистанционного зондирования Земли из космоса. 2018. Т. 16. № 3. С. 9–17.
  4. Полищук Ю.М., Полищук В.Ю., Брыксина Н.А., Покровский О.С., Кирпотин С.Н., Широкова Л.С. Методические вопросы оценки запасов метана в малых термокарстовых озерах криолитозоны Западной Сибири // Изв. Томского политехнического университета. 2015. Т. 326. № 2. С. 12–135.
  5. Grosse G., Romanovsky V., Walter K., Morgenstern A., Lantuit H., Zimov S. Distribution of thermokarst lakes and ponds at three yedoma sites in Siberia // Proc. of the 9th Intern. Conf. on Permafrost (June 29–July 3, 2008). Fairbanks, Alaska. 2008. P. 551‒556.
  6. Holgerson M.A., Raymond P.A. Large contribution to inland water CO2 and CH4 emissions from very small ponds // Nature Geoscience Letters. 2016. V. 9. P. 222–226.
  7. Karlsson J.M., Lyon S.W., Destouni G. Temporal behavior of lake size-distribution in a thawing permafrost landscape in Northwestern Siberia // Remote sensing. 2014. № 6. P. 621–636.
  8. Kirpotin S., Polishchuk Y., Bryksina N. Abrupt changes of thermokarst lakes in Western Siberia: impacts of climatic warming on permafrost melting // International Journal of Environmental Studies. 2009. V. 66. № 4. P. 423–431.
  9. Olson D.M., Dinerstein E., Wikramanayake E.D., Burgess N.D., Powell G.V., Underwood E.C., D’amico J.A., Itoua I., Strand H.E., Morrison J.C., Loucks C.J., Allnutt T.F., Ricketts T.H., Kura Y., Lamoreux J.F., Wettengel W.W., Hedao P., Kassem K.R. Terrestrial Ecoregions of the World: A New Map of Life on Earth: A new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity // BioScience. 2001. V. 51. Iss. 11. P. 933–938. https://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA] 2.0.CO;2
  10. Pokrovsky O.S., Shirokova L.S., Kirpotin S.N., Audry S., Viers J., Dupre B. Effect of permafrost thawing on the organic carbon and metal speciation in thermokarst lakes of Western Siberia // Biogeosciences. 2011. V. 8. P. 565–583.
  11. Polishchuk Y.M., Bogdanov A.N., Muratov I.N., Polishchuk V.Y., Lim A., Manasypov R.M., Shirokova L.S., Pokrovsky O.S. Minor contribution of small thaw ponds to the pools of carbon and methane in the inland waters of the permafrost – affected part of the Western Siberian lowland // Environmental Research Letters. 2018. V. 13. 045002. P. 1–16. https://doi.org/10.1088/1748-9326/aab046
  12. Serikova S., Pokrovsky O.S., Laudon H., Krickov I.V., Lim A.G., Manasypov R.M., Karlsson J. High carbon emissions from thermokarst lakes of Western Siberia // Nature Communications. 2019. 10(1): 1552. https://doi.org/10.1038/s41467-019-09592-1
  13. Walter K.M., Smith L.C., Chapin F.S. Methane bubbling from northern lakes: present and future contributions to the global methane budget // Phil. Trans. R. Soc. 2007. V. 365. P. 1657–1676.
  14. Zabelina S., Shirokova L., Klimov S., Chupakov A., Lim A., Polishchuk Y., Polishchuk V., Bogdanov A., Muratov I., Guerin F., Karlsson J., Pokrovsky O. Carbon Emission from Thermokarst Lakes in NE European Tundra // Limnology and Oceanography. 2020. 9999. P. 1–15. https://doi.org/10.1002/Ino.11560
  15. Zimov S.A., Voropaev Y.V., Semiletov I.P., Davidov S.P., Prosiannikov S.F., Chapin III F.S., Chapin M.C., Trumbore S., Tyler S. North Siberian lakes: a methane source fuelled by Pleistocene Carbon // Science. 1997. V. 277. P. 800–802.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2.

Скачать (447KB)
3.

4.

Скачать (92KB)

© И.Н. Муратов, О.А. Байсалямова, Ю.М. Полищук, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».