Lithospheric Magnetic Anomalies According to the CHAMP Satellite Data over the Western Himalayan Syntaxis and Surrounding Areas

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The spatial distribution of the lithospheric magnetic anomalies field obtained from the German Earth satellite CHAMP measurements for several years of its mission is investigated over the territory of the Indo-Asian collision, in particular, the Tarim region and the Western Himalayan Syntax (WHS). Maps of the total intensity Ta of the lithospheric magnetic field for these regions are give. The lithospheric magnetic anomalies field as a reflection of the consequences of the Indian lithospheric plate subduction under the Eurasian plate is discussed in the context of modern ideas about the regional geological and tectonic structure. The inversion of the magnetic anomalies sign over the northern part of the Indian Plate observed on Ta maps is supposed as a result of the lower crust heating due to mantle processes, the rise of the Curie isotherm and, as a consequence, the loss of the initial magnetization of the lower crust. In order to study in detail the WHS and surrounding territory, maps of the lithospheric magnetic anomalies field are constructed at the lowest level of CHAMP orbit which leads to increase their resolution by nearing to the field sources. The relationship of detected regional anomalies with tectonic processes in this seismically active area and with other available geophysical information is discussed. Interpretation of the revealed information shows that the images of lithospheric magnetic anomalies distinctly correlate with modern view at the large-scale geological and tectonic structures location.

作者简介

D. Abramova

Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation RAS

Email: labramova@igemi.troitsk.ru
Russia, Moscow, Troitsk

L. Abramova

Geoelectromagnetic Research Centre, Shmidt Institute of Physics of the Earth RAS

编辑信件的主要联系方式.
Email: labramova@igemi.troitsk.ru
Russia, Moscow, Troitsk

参考

  1. Абрамова Д.Ю., Абрамова Л.М. Литосферные магнитные аномалии на территории Сибири (по измерениям спутника СНАМР) // Геология и геофизика. 2014. Т. 55. С. 1081–1092.
  2. Абрамова Д.Ю., Абрамова Л.М., Варенцов И.М., Филиппов С.В. Исследование литосферных магнитных аномалий Гренландско-Исландско-Фарерского вулканического комплекса по данным измерений на спутнике CHAMP // Геофизические исследования. 2019. Т. 20(2). С. 5–18. https://doi.org/10.21455/gr2019.2-1
  3. Абрамова Д.Ю., Филиппов С.В., Абрамова Л.М. О возможностях использования спутниковых геомагнитных наблюдений в исследовании геолого-тектонического строения литосферы // Исслед. Земли из космоса. 2020. № 2. С. 69–81. https://doi.org/10.31857/ S0205961420010029
  4. Абрамова Д.Ю., Абрамова Л.М., Варенцов И.М. Аномальное литосферное магнитное поле над территорией Индо-Азиатской коллизии по данным спутника CHAMP // Исслед. Земли из космоса. 2022а. № 3. С. 55–65. https://doi.org/10.31857/S0205961422030022
  5. Абрамова Д.Ю., Филиппов С.В., Абрамова Л.М., Варенцов И.М. Литосферные магнитные аномалии над территориями крупных магматических провинций // Геофизические процессы и биосфера. 2022б. Т. 21. № 1. С. 33–42. https://doi.org/10.21455/GPB2022.1-2
  6. Вегенер А. Происхождение материков и океанов. В кн.: Современные проблемы естествознания. М.: “Госиздат”, 1925. 145 с.
  7. Добрецов Н.Л., Кулаков И.Ю., Полянский О.П. Геодинамика, поля напряжений и условия деформаций в различных геодинамических обстановках // Геология и геофизика. 2013. Т. 54. № 4. С. 469–499.
  8. Bai D., Unsworth M.J., Meju M.A., Ma X., Teng J., Kong X., SunY., Sun J., Wang L., Jiang C., Zhao C., Xiao P., Liu M. Crustal deformation of the eastern Tibetan plateau revealed by magnetotelluric imaging // Nat. Geosci. Lett. 2010. V. 3. P. 358–362. https://doi.org/10.1038/NGEO830S
  9. Brookfield M.E., Hashmat A. The geology and petroleum potential of the North Afghan platform and adjacent areas (northern Afghanistan, with parts of southern Turkmenistan, Uzbekistan and Tajikistan // Earth-Sci. Rev. 2001. V. 55. P. 41–71.
  10. Burtman V.S., Molnar P. Geological and geophysical evidence for deep subduction of continental crust beneath the Pamir // GSA Spec. Pap. 1993. V. 281. P. 1–76.
  11. Chen Y., Roecker S., Kosarev G. Elevation of the 410-km discontinuity beneath the central Tien Shan: Evidence for a detached lithospheric root // Geophys. Res. Let. 1997. V. 24. P. 1531–1534.
  12. Cotton F., Avouac P. Crust and upper-mantle structure under the Tian Shan from surface wave dispersion // Phys. Earth Planet Inter. 1994. V. 84. P. 1–4.
  13. Dewey J.F., Cande S., Pitman W.C. The tectonic evolution of the India/Eurasia collision zone // Eclogae Geol. Helv. 1989. V. 82. P. 717–734.
  14. Gao Z., Fan T. Intra-platform tectono-sedimentary response to geodynamic transition along the margin of the Tarim Basin, NW China // J. Asian Earth Sciences. 2014. V. 96. P. 178–193. https://doi.org/10.1016/j.jseaes.2014.08.023
  15. Gao G., Kang G., Li G., Bai C. Crustal magnetic anomaly and Curie surface beneath Tarim Basin, China, and its adjacent area // Canadian J. Earth Sciences. 2015. V. 52(6). https://doi.org/10.1139/cjes-2014-0204
  16. Gao G., Kang G., Li G., Bai C., Wu Y. An analysis of crustal magnetic anomaly and Curie surface in west Himalayan syntaxis and adjacent area // Acta Geod. et. Geoph. 2016. https://doi.org/10.1007/s40328-016-0179-z
  17. Gao R., Huang D., Lu D. Deep seismic reflection profile across the juncture zone between the Tarim basin and the west Kunlun mountains // Chin Sci. Bull. 2000. V. 45. P. 2281–2286.
  18. Ghose S., Hamburger W., Virieux J. Three-dimensional velocity structure and earthquake locations beneath the northern Tian Shan of Kyrgyzstan, central Asia // J. Geophys. Res. 1998. V. 103. P. 2725–2748.
  19. Hemant K., Maus S., Haak V. Interpretation of CHAMP crustal field anomaly maps using a geographical information system (GIS) technique // Earth Observation with CHAMP: Results from Three Years in Orbit. 2005. P. 249–254.
  20. Huang J., Zhao D. High-resolution mantle tomography of China and surrounding regions // J. Geophys. Res. 2006. V. 111. B09305. https://doi.org/10.1029/2005JB004066
  21. Kosarev G.L., Petersen N.V., Vinnik L.P., Roecker S.W. Receiver functions for the Tien Shan analog broadband network: Contrasts in the evolution of structures across the Talasso-Fergana fault // J. Geophys. Res. 1993. V. 98. P. 4437–4448.
  22. Koulakov I., Sobolev S. A tomographic image of Indian lithosphere break-off beneath the Pamir-Hindukush region // Geophys. J. Int. 2006. V. 164. P. 425–440.
  23. Lei J., Zhou H., Zhao D. 3-D velocity structure of P-wave in the crust and upper-mantle beneath Pamir and adjacent region // Chin J. Geophys. 2002. V. 45. P. 802–811.
  24. Li S., Mooney W.D. Crustal structure of China from deep seismic sounding profiles // Tectonophysics. 1998. V. 288. P. 105–113. https://doi.org/10.1016/S0040-1951(97) 00287-4
  25. Li Z., Chen H., Song B., Li Y., Yang S., Yu X. Temporal evolution of the Permian large igneous province in Tarim Basin in northwestern China // J. Asian Earth Sciences. 2011. V. 42. P. 917–927.https://doi.org/10.1016/j.jseaes.2011.05.009
  26. Lowes F. Geomagnetics spectrum, spatial. In: Gubbins D., Herrero-Bervera E. (eds) Encyclopedia of geomagnetism and paleomagnetism. 2007. Springer. Berli. P. 350–353.
  27. Lu S., Li H., Zhang C., Niu G. Geological and geochronological evidence for the Precambrian evolution of the Tarim Craton and surrounding continental fragments // Precambrian Res. 2008. V. 160. P. 94–107. https://doi.org/10.1016/j.precamres.2007.04.025
  28. Mechie J., Yuan X., Schurr B., Schneider F., Sippl C., Ratschbacher L., Minaev V., Gadoev M., Oimahmadov I., Abdybachaev U., Moldobekov B., Orunbaev S., Negmatullaev S. Crustal and uppermost mantle velocity structure along a profile across the Pamir and southern Tien Shan as derived from project TIPAGE wide-angle seismic data // Geophys. J. Int. 2012. V. 188. P. 385–407.
  29. Molnar P., England P., Martinod J. Mantle dynamics, the uplift of the Tibetan Plateau, and the Indian monsoon // Rev. Geophys. 1987. V. 31. P. 357–396.
  30. Negredo A., Replumaz A., Villasenor A., Guillot S. Modeling the evolution of continental subduction processes in the Pamir-Hindu Kush region // Earth Planet Sci. Lett. 2007. V. 259. P. 212–225. https://doi.org/10.1016/j.epsl.04.043
  31. Nelson K., Zhao W., Brown L. Partially molten middle crust beneath southern Tibet: Synthesis of Project INDEPTH results // Science. 1996. V. 274. P. 1684–1696.
  32. Reigber C., Lühr H., Schwintzer P. CHAMP mission status. 2002. Advances in Space Research V. 30 (2). P. 129–134. https://doi.org/10.1016/S0273-1177(02)00276-4
  33. Roecker S., Sabitova M., Vinnik L., Bormakov A., Golvanov I., Mamatkanova R. Three-dimensional elastic wave velocity structure of the western and central Tian Shan // J. Geophys. Res. 1993. V. 98. № 15. P. 779–795.
  34. Sobel E.R., Chen J., Heermance R.V. Late Oligocene-Early Miocene initiation of shortening in the Southwestern Chinese Tian Shan: implications for Neogene shortening rate variations // Earth Planet Sci Lett. 2006. V. 247. P. 70–81.
  35. https://doi.org/10.1016/j.epsl.2006.03.048
  36. Sobel E., Schoenbohm L., Chen J., Thiede R., Stockli D., Sudo M., Strecker M. Late Miocene-Pliocene deceleration of dextral slip between Pamir and Tarim: implications for Pamir orogenesis // Earth Planet Sci. Lett. 2011. V. 304. P. 369–378. https://doi.org/10.1016/j.epsl.2011.02.012
  37. Tapponnier P., Mattauer M., Proust F., Cassaigneau C. Mesozoic ophiolites, sutures, and large-scale tectonic movements in Afghanistan // Earth Planet Sci Lett. 1981. V. 52. P. 355–371.
  38. Tapponnier P., Zhiqin X., Roger F., Meyer B., Arnaud N., Wittlinger G., Jingsui Y. Oblique stepwise rise and growth of the Tibetan plateau // Science. 2001. V. 294. P. 1671–1677.
  39. Tiwari V.M., Rajasekhar R.P., Mishra D.C. Gravity anomaly, lithospheric structure and seismicity of west Himalayan syntaxis // J. Seismol. 2009. V. 13. P. 363–370.
  40. Wang Q., Zhang P., Freymueller J., Bilham R., Larson K. Present-day crustal deformation in China constrained by global positioning system measurements // Science. 2001. V. 294. P. 574–577.
  41. Wessel P., Smith W.H.F. The generic mapping tools. Technical reference and cookbook version 4.2., 2007. https://doi.org/gmt.soest.hawaii.edu
  42. Windley B.F., Allen M.B., Zhang C., Zhao Z., Wang G. Paleozoic accretion and Cenozoic redeformation of the Chinese Tien Shan Range, central Asia // Geology. 1990. V. 18. P. 128–131. https://doi.org/10.1130/0091-7613
  43. Yang H., Teng J., Zhang X., Sun R., Ke X. Features of the deep geophysical field beneath the west Himalayan syntaxis // Progr. Geophys. 2009. V. 24. P. 1975–1986. https://doi.org/10.3969/j.issn1004-2903.2009.06.007
  44. Yin A., Harrison T. Geologic evolution of the Himalayan-Tibetan orogeny // Annu. Rev. Earth Planet. Sci. 2000. V. 28. 21 p.
  45. Zhang P., Wang M., Gan W., Burgmann R., Molnar P., Wang Q., Niu Z., Sun J., Wu J., Hanrong S., Xinzhao Y. Continuous deformation of the Tibetan plateau from global positioning system data // Geology. 2004. V. 32. P. 809–812. https://doi.org/10.1130/G20554.1
  46. Zhao D. Multiscale seismic tomography and mantle dynamics // Gondwana Res. 2009. V. 15. P. 297–323.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (236KB)
3.

下载 (2MB)
4.

下载 (1MB)
5.

下载 (3MB)
6.

下载 (2MB)

版权所有 © Д.Ю. Абрамова, Л.М. Абрамова, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».