Derivation of the carbon dioxide total column in the atmosphere from satellite-based infrared fourier-transform spectrometer IKFS–2 measurements: analysis and application experience
- Authors: Rublev A.N.1, Golomolzin V.V.1, Uspensky А.B.1, Kiseleva Y.V.1, Kozlov D.A.2, Belan B.D.3, Arshinov M.Y.3, Timofeev Y.M.4, Panov А.V.5, Prokushkin A.S.5
-
Affiliations:
- State Research Centre “Planeta”
- Federal State Unitary Enterprise Keldysh Research Center
- V.E. Zuev Institute of Atmospheric Optics
- Saint Petersburg State University
- Sukachev Institute of Forest, Siberian Branch of the Russian Academy of Sciences
- Issue: No 4 (2024)
- Pages: 56-68
- Section: ФИЗИЧЕСКИЕ ОСНОВЫ ИССЛЕДОВАНИЯ ЗЕМЛИ ИЗ КОСМОСА
- URL: https://journal-vniispk.ru/0205-9614/article/view/272403
- DOI: https://doi.org/10.31857/S0205961424040051
- EDN: https://elibrary.ru/EMDUPJ
- ID: 272403
Cite item
Abstract
The paper discusses the use of a new version of the regression technique for derivation the total content of carbon dioxide in the atmosphere XCO2 (column-averaged dry-air mole fraction) from measurements of the infrared Fourier-transform spectrometer IKFS–2 installed on board Russian meteorological satellite Meteor-M No. 2. To evaluate the accuracy of satellite-based XCO2 estimates the retrospective comparison was made with data from ground-based spectroscopic measurements at Peterhof site of St. Petersburg State University as well as with aircraft measurements of the V. E. Zuev Institute of Atmospheric Optics (IOA) in the area of the Novosibirsk Reservoir conducted in 2019-2022. A brief description of the regression technique modifications is given made to improve the accuracy of satellite – based XCO2 estimates. In particular, to compensate for the effect of changes in the IKFS-2 characteristics during a long flight, the XCO2 estimates calibration is realized using ground - based XCO2 measurements at the NOAA Observatory on Mauna Loa volcano (island of Hawaii). After calibration and cloud scenes filtering, the discrepancy between satellite estimates and ground-based / aircraft measurements is characterized by root mean square deviation of ~4 ppm or 1% of the CO2 total content. In order to accelerate the adjustment of the regression technique, used for estimating XCO2, to IKFS-2 data on new satellites, it is reasonable to use XCO2 observations at the TCCON terrestrial network in addition to conventional contact measurements of CO2 concentrations. Along with this, it seems rational to use the cryogenic film thickness on the glass of the IKFS-2 photodetector, characterizing the state of the instrument, as additional predictor in the regression model.
Full Text

About the authors
A. N. Rublev
State Research Centre “Planeta”
Author for correspondence.
Email: alex.rublev@mail.ru
Russian Federation, Moscow
V. V. Golomolzin
State Research Centre “Planeta”
Email: alex.rublev@mail.ru
Russian Federation, Moscow
А. B. Uspensky
State Research Centre “Planeta”
Email: alex.rublev@mail.ru
Russian Federation, Moscow
Yu. V. Kiseleva
State Research Centre “Planeta”
Email: alex.rublev@mail.ru
Russian Federation, Moscow
D. A. Kozlov
Federal State Unitary Enterprise Keldysh Research Center
Email: alex.rublev@mail.ru
Russian Federation, Moscow
B. D. Belan
V.E. Zuev Institute of Atmospheric Optics
Email: alex.rublev@mail.ru
Russian Federation, Tomsk
M. Y. Arshinov
V.E. Zuev Institute of Atmospheric Optics
Email: alex.rublev@mail.ru
Russian Federation, Tomsk
Yu. M. Timofeev
Saint Petersburg State University
Email: alex.rublev@mail.ru
Russian Federation, Saint Petersburg
А. V. Panov
Sukachev Institute of Forest, Siberian Branch of the Russian Academy of Sciences
Email: alex.rublev@mail.ru
Russian Federation, Krasnoyarsk
A. S. Prokushkin
Sukachev Institute of Forest, Siberian Branch of the Russian Academy of Sciences
Email: alex.rublev@mail.ru
Russian Federation, Krasnoyarsk
References
- Ivlev G.A., Kozlov A.V., Kozlov V.S., Morozov M.V., Panchenko M.V., Penner I.E., Pestunov D.A., Sikov G.P., Simonenkov D.V., Sinicyn D.S., Tolmachev G.N., Filippov D.V., Fofonov A.V. Chernov D.G., Shamanaev V.S., Shmargunov V.S. Samolet - laboratoriya TU-134 “Optik” // Optika atmosfery i okeana. 2011. T. 24. № 9. S. 805-816.
- Antonovich V.V., Antohina O.Yu., Antohin P.N., Arshinova V.G., Arshinov M.Yu., Belan B.D., Belan S.B., Guruleva E.V., Davydov D.K., Dudorova N.V., Ivlev G.A., Kozlov A.V., Rasskazchikova T.M., Savkin D.E., Simonenkov D.V., Sklyadneva T.K., Tolmachev G.N., Fofonov A.V. Osnovnye rezul'taty monitoringa sostava vozduha na territorii Zapadnoj Sibiri i akvatorii Rossijskogo sektora Arktiki, provedennogo IOA SO RAN s pomoshch'yu stacionarnyh i mobil'nyh kompleksov // Sbornik tezisov “Mezhdunarodnyj simpozium «Atmosfernaya radiaciya i dinamika» (MSARD-2023)”.Sankt-Peterburg. 2023. P. 8‒9.
- Arshinov M.Yu., Belan B.D., Davydov D.K., Inouje G., Maksyutov Sh., Machida T., Fofonov A.V. Vertikal'noe raspredelenie parnikovyh gazov nad Zapadnoj Sibir'yu po dannym mnogoletnih izmerenij // Optika atmosfery i okeana. 2009. Vyp. 22. № 5. C. 457‒464.
- Baza dannyh izmerenij seti TCCON. URL: https://tccondata.org/plots/public (Data obrashcheniya 10.01.2024).
- Belan B.D. Dinamika sloya peremeshivaniya po aerozol'nym dannym // Optika atmosfery i okeana. 1994. T. 7. № 08. P. 1045–1054.
- Byulleten' WMO, 2023. The State of Greenhouse Gases in the Atmosphere Based on Global Observations through 2022. WMO Greenhouse Gas Bulletin No. 19. Geneva: WMO. (Elektronnyj resurs). URL: https://library.wmo.int/idurl/4/68532 (Data obrashcheniya 12.01.2024).
- Vertikal'nye profili dioksida ugleroda nad Molokai (Gavajskij arhipelag). [Elektronnyj resurs] https://gml.noaa.gov/dv/data/index.php?site=HAA&type=Aircraft%2BPFP (Data obrashcheniya 14.12.2023).
- Golomolzin V.V., Rublev A.N., Kiseleva Yu.V., Kozlov D.A., Prokushkin A.S., Panov A.V. Opredelenie obshchego soderzhaniya dioksida ugleroda nad territoriej Rossii po dannym otechestvennogo kosmicheskogo apparata Meteor-M № 2 // Meteorologiya i gidrologiya. 2022. № 4. P. 79‒95.
- Zavelevich F.S., Golovin Yu.M., Desyatov A.V., Kozlov D.A., Macickij Yu.P., Nikulin A.G., Travnikov R.I., Romanovskij A.S., Arhipov S.A., Celikov V.A. Tekhnologicheskij obrazec bortovogo infrakrasnogo fur'e-spektrometra IKFS-2 dlya temperaturnogo i vlazhnostnogo zondirovaniya atmosfery Zemli // Sovr. probl. dist. zondir. Zemli iz kosmosa. 2009. T. 1. P. 259‒266.
- Mihal'chenko P.S., Grigorenko B.V., Getmanec V.F., Kurskaya T.A. Vliyanie tolshchiny kriokondensata na radiacionnye harakteristiki ekrana teploizolyacii // Preprint № 43‒88. FTINT AN USSR. Har'kov. 1988. P. 15.
- Nikitenko A.A., Timofeev Yu.M., Virolajnen Ya.A., Rublev A.N., Golomolzin V.V., Kiseleva Yu.V., Uspenskij A.B., Kozlov D.A. Sravneniya nazemnyh i sputnikovyh izmerenij obshchego soderzhaniya СO2 v Petergofe // Sovr. probl. dist. zondir. Zemli iz kosmosa. 2024. V. 21. № 4. P. 275–283.
- Uspenskij A.B., Rublev A.N., Kozlov D.A., Golomolzin V.V., Kiseleva Yu.V, Kozlov I.A., Nikulin A.G. Monitoring osnovnyh klimaticheskih peremennyh atmosfery po dannym sputnikovogo IK-zondirovshchika IKFS-2 // Meteorologiya i gidrologiya. 2022. № 11. P. 5‒18.
- Uspenskij A.B. Izmereniya raspredeleniya soderzhaniya parnikovyh gazov v atmosfere so sputnikov // Fundamental'naya i prikladnaya klimatologiya. 2022. T. 8. № 1. P. 122‒14.
- Uspenskij A.B., Timofeev Yu.M., Kozlov D.A., Chernyj I.V. Razvitie metodov i sredstv distancionnogo temperaturno-vlazhnostnogo zondirovaniya zemnoj atmosfery // Meteorologiya i gidrologiya. 2021. № 12. S. 33‒44.
- Fiedler Lars, Stuart Newman, and Stephan Bakan. Correction of detector nonlinearity in Fourier transform spectroscopy with a low-temperature blackbody // Applied Optics. Vol. 44. No. 25, September 2005. P. 5332—5340.
- Hudgins D.M., Sandford S.A., Allamandola L.J., & Tielens A.G.G.M. Mid- and Far-Infrared Spectroscopy of Ices: Optical Constants and Integrated Absorbances // Astrophysical Journal Supplement, 1993, 86, 713.
- Roche S., Strong K., Wunch D., Mendonca J., Sweeney C., Baier B., Biraud S.C., Laughner J.L., Toon G.C., and Connor B.J. Retrieval of atmospheric CO2 vertical profiles from ground-based near-infrared spectra //Atmos. Meas. Tech., 2021, 14, 3087–3118.
- Taylor et al. An 11-year record of XCO2 estimates derived from GOSAT measurements using the NASA ACOS version 9 retrieval algorithm. URL https://doi.org/10.5194/essd-14-325-2022.
- Taylor T.E., O'Dell C.W., Baker D., Bruegge C., Chang A., Chapsky L., Chatterjee A., Cheng C., Chevallier F., Crisp D., Dang L., Drouin B., Eldering A., Feng L., Fisher B., Fu D., Gunson M., Haemmerle V., Keller G.R., Kiel M., Kuai L., Kurosu T., Lambert A., Laughner J., Lee R., Liu J., Mandrake L., Marchetti Y., McGarragh G., Merrelli A., Nelson R.R., Osterman G., Oyafuso F., Palmer P.I., Payne V.H., Rosenberg R., Somkuti P., Spiers G., To C., Weir B., Wennberg P.O., Yu S., and Zong J. Evaluating the consistency between OCO-2 and OCO-3 XCO2 estimates derived from the NASA ACOS version 10 retrieval algorithm, Atmos. Meas. Tech., 16, 3173–3209, https://doi.org/10.5194/amt-16-3173-2023, 2023.
- Wunch Debra, Toon Geoffrey C., Blavier Jean-François L., Washenfelder Rebecca A., Notholt Justus, Connor Brian J., Griffith David W.T., Sherlock Vanessa, Wennberg Paul O. The Total Carbon Column Observing Network // Phil. Trans. R. Soc. A 2011 369, 2087-2112. [Электронный ресурс] URL: https://royalsocietypublishing.org/doi/10.1098/rsta.2010.0240. doi: 10.1098/rsta.2010.0240.
- Zavelevich F., Kozlov D., Kozlov I., Cherkashin I., Uspensky A., Kiseleva Yu., Golomolzin V., Filei A. IKFS-2 radiometric calibration stability in different spectral bands // GSICS Quarterly. 2018. V. 12. No. 1. P. 4–6.
Supplementary files
