Structural-Tectonophysical Approach to Interpretation of Lineament Analysis Results for Prediction of Ore-Forming Mineral Systems on the Example of the Tuyukansky Ore Cluster Area

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

For the Tuukansky ore cluster area, located in Russia in the Mamsko-Chuysky district of the Irkutsk region and identified as promising for the discovery of new uranium, gold, and iron ore objects, an original approach was applied based on geoinformation technologies and processing of Earth remote sensing data, including structural-geomorphological, spatial-geometric, spatial-density, and tectonophysical methods for identifying specific stages of development of the fault framework defining the location of ore mineralization. The possibility of using the morphological features of the terrain for reliable reconstruction of both neotectonic and ancient fault networks using a special lineament analysis technique based on analysis of a digital elevation model created using SRTM data has been proven. It has been shown that zones of the dynamic influence of northeast and northwest faults act a crucial role in mineral localization. Based on the tectonophysical approach, the orientations of the main axes of compression and tension in the regional stress-strain field, as well as the kinematics of the major types of formed faults, have been reconstructed. Taking into account the established orientation of the main axes of the regional stress field when calculating the shear trend made it possible to identify the most hydraulically active segments of fault structures. Within the zones of dynamic influence of identified faults, the parameters of local stress-strain fields, as well as the formation stages of these structures, have been reconstructed. The obtained information should be taken into account when compiling a metallogenic essay and predicting minerals in the area.

Full Text

Restricted Access

About the authors

S. A. Ustinov

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry of the Russian Academy of Sciences

Author for correspondence.
Email: stevesa@mail.ru
Russian Federation, Moscow

A. M. Chepchugov

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry of the Russian Academy of Sciences; All-Russian Research Institute of Mineral Resources named after N.M. Fedorovsky

Email: stevesa@mail.ru
Russian Federation, Moscow; Moscow

M. A. Tomarovskaya

Vostok GeoService Partner LLC

Email: stevesa@mail.ru
Russian Federation, Chita

V. A. Petrov

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry of the Russian Academy of Sciences

Email: stevesa@mail.ru
Russian Federation, Moscow

A. D. Svecherevsky

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry of the Russian Academy of Sciences

Email: stevesa@mail.ru
Russian Federation, Moscow

E. V. Yarovaya

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry of the Russian Academy of Sciences

Email: stevesa@mail.ru
Russian Federation, Moscow

References

  1. Anders M.H., Wiltschko D.V. Microfracturing, paleostress and the growth of faults // J. Struct. Geol. 1994. V. 16. № 6. P. 795–815.
  2. Anderson E.M. The dynamics of faulting // Transactions of the Edinburgh Geological Society, 8. 1905. P. 387–402.
  3. Borynyakov S.A., Seminsky K.Zh., Buddo V.Yu., Miroshnichenko A.I., Cheremnykh A.V., Cheremnykh A.S., Tarasova A.A. The main patterns of fault formation in the lithosphere and their applied consequences (based on the results of physical modeling) // Geodynamics and Tectonophysics. 2014. No. 5(4). P. 823–861 (In Russian).
  4. Chester F.M., Evans J.P., Biegel R.L. Internal structure and weakening mechanisms of the San Andreas fault // J. Geophys. Res.: Solid Earth. 1993. V. 98. № B1. P. 771–786.
  5. Enoh M.A., Okeke F.I., Okeke U.C. Automatic lineaments mapping and extraction in relationship to natural hydrocarbon seepage in Ugwueme, South-Eastern Nigeria. Geod. Cartogr. 2021. 47. P. 34–44.
  6. Evans J.P., Forster C.B., Goddard J.V. Permeability of fault related rocks, and implications for hydraulic structure of fault zones // J. Struct. Geol. 1997. V. 19. № 11. P. 1393–1404.
  7. Faulkner D.R., Mitchell T.M., Healy D., Heap M.J. Slip on weak faults by the rotation of regional stress in the fracture damage zone // Nature. 2006. V. 444. № 7121. P. 922–925.
  8. Faulkner D.R., Mitchell T.M., Jensen E., Cembrano J. Scaling of fault damage zones with displacement and the implications for fault growth processes. // J. Geophys. Res. Solid Earth. 2011. V. 116. № 5. P. 1–11.
  9. Faulkner D.R., Sanchez-Roa C., Boulton C., den Hartog, S.A.M. Pore fluid pressure development in compacting fault gouge in theory, experiments, and nature. // J. Geophys. Res.: Solid Earth. 2018. V. 123. № 1. P. 226–241.
  10. Fuchs K., Müller B. World Stress Map of the Earth: a key to tectonic processes and technological applications // Naturwissenschaften. 2001. № 88. P. 357–371.
  11. Gloaguen R., Marpu P.R., Niemeyer I. Automatic extraction of faults and fractal analysis from remote sensing data. Nonlinear Process. Geophys. 2007. 14. P. 131–138.
  12. Gordeev N.A., Molchanov A.B. Automation of structural-geomorphological method for reconstruction of shear tectonic stresses L.A. Sim // Geoinformatics. 2019. No. 2. P. 25-33 (In Russian).
  13. Grishkov G.A., Nafigin I.O., Ustinov S.A., Petrov V.A., Minaev V.A. Development of a technique for automatic identification of lineaments based on a neural network approach // Exploration of the Earth from Space. 2023. No. 6. P. 86-97 (In Russian).
  14. Gzovsky M.V. Fundamentals of tectonophysics. M.: Nauka, 1975. 536 p. (In Russian).
  15. Hancock P.L. Brittle microtectonics: principles and practice // J. of Struct. Geol. 1985. V. 7. N 3/4. P. 437–457.
  16. Hobbs W.H. Lineaments of the Atlantic Border Region // Geological Society. American Bulletin. 1904. V. 15. P. 483-506.
  17. Ivanov A.I., Rozhok S.N., Strakhova T.M., Yakovlev V.P. and others. Geological structure and minerals of the interfluve of the lower reaches of Vitim and Bol. Patoma (Report of the Tuyukan Party on a group geological survey at a scale of 1:50,000 for 1978-1980) in 3 volumes. Irkutsk, 1982. Inv. No. 14-78-31/24 (In Russian).
  18. Jaeger J.C., Cook N.G.W. Fundamentals of Rock Mechanics. 3rd edit. 1979. 593 p.
  19. Kats Ya.G., Poletaev A.I., Rumyantseva E.F. Fundamentals of lineament tectonics. M.: Nedra, 1986. 144 p. (In Russian).
  20. Koveshnikov A.M., Podshivalov A.N., Pimnev Yu.K. and others. Prospective uranium zoning of the territory of the Tonoda uplift with the selection of areas and objects for detailed prospecting and assessment work based on structural-geological, radiogeochemical, mineralogical and petrographic studies, interpretation of space and aerial photographs and revision of known uranium occurrences with the drawing up of a scale prospective zoning scheme 1:200,000 on an area of 7.5 thousand square meters. According to geological assignment 5-1 for 1985-1989. Irkutsk 1989. RGF No. 2698 (In Russian).
  21. Kuzmin Yu.O. Modern anomalous deformations of the earth's surface in fault zones: shear or expansion? // Geodynamics and tectonophysics. 2018. Vol. 9. No. 3. P. 967–987 (In Russian).
  22. Liping Y., Xingimin M. and Xiaoqiang Z. SRTM DEM and its application advances // International Journal of Remote Sensing. 2011. Vol. 32. №. 14. P. 3875–3896.
  23. Makariev L.B., Efremova U.S., Krymsky R.Sh., Sergeev S.A. Age and stages of uranium mineralization of the Tuyukan ore cluster (Tonodsky district, Northern Transbaikalia) // Region. geology and metallogeny. 2019. No. 77. P. 67–74 (In Russian).
  24. Makariev L.B., Mironov Yu.B. Features of metallogeny and prospects for industrial uranium bearing capacity of the Chuya-Tonod mineragenic zone of northern Transbaikalia (based on materials from GK-1000/3 and GDP-200/2) // Regional Geology and Metallogeny. 2014. No. 57. P. 87–94 (In Russian).
  25. Mashkovtsev G.A., Konstantinov A.K., Miguta A.K., Shumilin M.V., Shchetochkin V.N. Uranium from Russian subsoil. M.: VIMS, 2010. 850 p. (In Russian).
  26. Mitrofanova N.N., Boldyrev V.I., Korobeinikov N.K., Mitrofanov G.L. and others. State geological map of the Russian Federation. Scale 1: 1,000,000 (third generation). Aldano-Zabaikalskaya series. Sheet O-49 – Kirensk. Explanatory letter. St. Petersburg: Kartfabrika VSEGEI, 2012. 607 p. (In Russian).
  27. Nicolas A. Fundamentals of rock deformation. M.: Mir. 1992. 167 p. (In Russian).
  28. Nikolsky F.V. Morphology and genesis of folds of the northern margin of the Baikal-Patom Highlands and the Prilensky Plateau. Author's abstract. Ph.D. dis. Irkutsk, 1975. 22 p. (In Russian).
  29. Paplinski A. Directional filtering in edge detection. IEEE Trans. Image Processing 1998. 7. P. 611–615.
  30. Petrov V.A., Sim L.A., Nasimov R.M., Shchukin S.I. Fault tectonics, neotectonic stresses and hidden uranium mineralization in the Streltsovskaya caldera area // Geology of ore deposits. 2010. Volume 52. No. 4. P. 310-320 (In Russian).
  31. Rats M.V., Chernyshev S.N. Fractures and properties of fractured rocks. M.: Nedra, 1970. 160 p. (In Russian).
  32. Rebetsky Yu.L., Sim L.A., Marinin A.V. From slip surfaces to tectonic stresses. Methods and algorithms. M.: GEOS, 2017. 235 p. (In Russian).
  33. Riedel W. Zur Mechanik geologischer Brucherschei-nungen // Zbl. Mineralogie, Geol. Und Palaentol., Abt. B. 1929. P. 354–368.
  34. Rowe C.D., Ross C., Swanson M.T., Pollock S., Backeberg N.R., Barshi N.A. Geometric complexity of earthquake rupture surfaces preserved in pseudotachylyte networks // J. Geophys. Res.: Solid Earth. 2018. № 123. P. 7998-8015.
  35. Ruzhich V.V., Kocharyan G.G., Travin A.V., Savelyeva V.B., Ostapchuk A.A., Rasskazov S.V., Yasnygina T.A., Yudin D.S. Determination of P-T conditions during the formation of seismogenic movements along the deep segment of the marginal suture of the Siberian craton // Dokl. RAS. 2018. T. 481. No. 4. P. 434–437 (In Russian).
  36. Seminsky K.Zh. Internal structure of continental fault zones: tectonophysical aspect. Novosibirsk: Publishing house SB RAS, Branch “GEO”, 2003. 243 p. (In Russian).
  37. Sherman S.I. Seismic process and earthquake forecast: tectonophysical concept. Novosibirsk: Geo, 2014. 359 p. (In Russian).
  38. Sherman S.I., Bornyakov S.A., Buddo V.Yu. Areas of dynamic influence of faults (modeling results). Novosibirsk: Science. SO AN USSR, 1983. 110 p. (In Russian).
  39. Shevyrev S.L. On new possibilities for large-scale predictive assessment of remote sensing image patterns using the example of the Lower Taiga ore cluster, Primorye // Ores and Metals. 2015. No. 2. P. 56–66 (In Russian).
  40. Shevyrev S.L., Khomich V.G. Identification of infrastructural elements of ore-magmatic systems of Primorye based on space sensing materials // Vestnik VSU. 2013. No. 2. P. 118–128 (In Russian).
  41. Shmankevich A.Yu., Melnikov I.D. Report on the results of prospecting geological and geophysical work in the western part of the Tonoda anticlinorium (Northern party of the Meget expedition, 1980-83). 1983. RGF No. 404197 (In Russian).
  42. Sibson R.H. Thickness of the seismic slip zone // BSSA. 2003. V. 93. № 3. P. 1169–1178.
  43. Sim L.A. Study of tectonic stresses using geological indicators (methods, results, recommendations) // Izv. Universities. Geology and exploration. 1991. No. 10. P. 3–22 (In Russian).
  44. Sim L.A., Mikhailova A.V., Voitenko V.N. Strike-slip tectonics of platforms (according to modeling and reconstruction of neotectonic stresses) // Problems of modern seismology and geodynamics of Central and East Asia. Irkutsk: Publishing house IZK SB RAS, 2007. T. 2. P. 147–151 (In Russian).
  45. Sivkov D.V., Chitalin A.F., Dergachev A.L. Application of lineament analysis to identify patterns of localization of gold mineralization on the territory of the Taryn ore field in the Republic of Sakha (Yakutia) // Research of the Earth from Space. 2020. No. 1. P. 3-19 (In Russian).
  46. Sizykh V.I. Thrust-thrust tectonics of the margins of ancient platforms. Novosibirsk, 2001. 154 p. (In Russian).
  47. Smirnov V.I. Geology of minerals. M.: Nedra. 1976. 688 p. (In Russian).
  48. Suzen M.L., Toprak V. Filtering of Satellite Images in Geological Lineament Analyses: An Application to a Fault Zone in Central Turkey. Int. J. Remote Sens. 1998. 19. P. 1101–1114.
  49. Tarasevich Yu.Yu. Percolation: theory, applications, algorithms: Textbook. M.: Editorial URSS, 2002. 112 p. (In Russian).
  50. Ustinov S.A., Petrov V.A. Use of detailed digital relief models for structural-lineament analysis (using the example of the Urtui granite massif, SE Transbaikalia). // Geoinformatics. 2016. No. 2. P. 51–60 (In Russian).
  51. Wilson J.E., Chester J.S., Chester F.M. Microfracture analysis of fault growth and wear processes, Punchbowl Fault, San Andreas System, California. // J. Struct. Geol. 2003. №. 25. P. 1855–1873.
  52. Wyborn L.A.I., Heinrich C.A., Jaques A.L. Australian Proterozoic mineral systems: essential ingredients and mappable criteria // AusIMM Publication Series. № 4/94. 1994. P. 109–115.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic geological map of the area of the Tuyukan ore cluster compiled by the authors based on the materials of GGK sheets O-49 and O-49-XII (Mitrofanova et al., 2012): 1 - Upper Rhean sediments of the cover (RF3nk); 2 - Middle Rhean sediments of the cover (RF3hv); 3 - subvolcanic formations of the Medzhvezhevsky complex (νβF2m); 4 - Medzhevsky Formation (RF2md); 5 - Purpolsky Formation (RF1pp); 6 - Concoder Formation (KR2kn); 7 - Malominsk dynamo-metamorphic complex (ktKR2mm); 8 - Sogdiondon Formation (KR2sg); 9 - Chui-Nechersk granitoid complex (γKR2cn); 10 - Vitim Formation (KR2vt); 11 - Mikhailovskaya Formation (KR1mh); 12 - Albazinskaya Formation (KR1al); 13 - Chui Formation (KR1: AR2cs); 14 - regional hydrothermal-metasomatic zones; 15 - faults removed from the geological map O-49-XII; 16-18 - deposits (a) and ore occurrences (b): 16 - U, 17 - Sn, 18 - Fe; 19-24 - ore occurrences: 19 - Au, 20 - Cu, 21 - Li, 22 - Ta and Nb, 23 - Ti, 24 - W; 25 - conventional boundaries of the Tonodsk granitoid-metamorphic uplift; 26 - prospective Tuyukansky area. Numbers indicate deposits: U - Tuyukanskoye (1), Sn - Nakhodka (2), Fe - Chistoe (3), Yazovskoye (4), Gremucheye (5), Sukhoye (6), Barchikhinskoye (7).

Download (1MB)
3. Fig. 2. Initial data of SRTM digital elevation model in GeoTIFF format (a) and their visualisation in GIS environment (b); c-d - the result of DEM filtering with visualisation of the result in shadow relief along four main directions (shown with red arrow): N-S-S (c), NE-SW (d), B-W (e), SE-NW (f) with lineaments (red lines) and rose-diagrams of their orientations selected by the neural network. Blue contour - boundaries of the prospective Tuyukansky area.

Download (1MB)
4. Fig. 3. The most common models of the formation of the paragenesis of plumage fractures of the main fault (main discontinuity) in the shear zone on the example of right shear. A - scheme of formation of plumage fractures near the surface of the main discontinuity (Smirnov, 1976). B - scheme of secondary fracture formation according to W. Riedel (Riedel, 1929): Y - main shears, R and R' - conjugate Riedel chipping, P - secondary shears, T - detachments, φ - angle of internal friction, σ1 - axis of maximum compression, σ3 - axis of maximum extension. B - systems of echeloned structural elements formed in the shear fault zone during simple shearing (Hancock, 1985): Y - trunk shears, R and R' - conjugate Riedel shears, X, P - secondary shears, e - detachments, n - dumps, t - outbursts, f - folds, S1 - cleavage, σ1 - axis of maximum compression, σ3 - axis of maximum extension. D - paragenesis of shear cracks in the shear zone (Gzovsky, 1975): variants of stress state at shear angles 45° (a), < 45° (b), additional tensile (c) and compressive (d) environments; 1 - fault; 2 - spalling cracks; 3, 4 - spalling cracks with right (3) and left (4) shear kinematics; 5, 6 - orientation of tensile (5) and compressive (6) axes in the horizontal plane; 7, 8 - additional tensile (7) and compressive (8) environments.

Download (372KB)
5. Fig. 4. General scheme of shear tendency (μ) determination based on the combination of regional anisotropic stress orientations (black symbols - maximum compression axis orientation) with orientations of rupture segments with calculation of shear (τ) to normal stress ratio (σn) for fault segments: S1 - maximum compression axis orientation, S2 - minimum compression axis, SH - regional maximum compression axis orientation. Yellow and orange colours indicate segments showing the highest degree of hydraulic activity (Fuchs and Müller, 2001).

Download (411KB)
6. Fig. 5. Scheme of spatial distribution of ancient emplacement discontinuities and neotectonic structures on the territory of the sheet GGK O-49, scale 1:1 000 000, and rose-diagrams of their orientations: 1, 2 - regional (1) and neotectonic (2) discontinuities; 3, 4 - rose-diagrams of ancient bedding discontinuities (3) and neotectonic zones (4); 5-7 - boundaries of the GGK O-49 sheet (5), the study area (6), and the prospective Tuyukan area (7).

Download (780KB)
7. Fig. 6. Schemes of relative specific density of lineaments identified with the help of neural network (a), selected by the operator (b), regional discontinuities according to GGK O-49-XII (c) with rose-diagrams of orientation of the corresponding structures. 1-3 - deposits (a) and ore occurrences (b): U (1), Sn (2), Fe (3); 4-7 - ore occurrences: Au (4), Cu (5), Ti (6), W (7); 8, 9 - lineaments selected by neural network (8), selected by operator (9), 10 - regional discontinuities according to GGK O-49-XII; 11 - conventional boundaries of Tonodsk granitoid-metamorphic uplift; 12 - boundaries of prospective Tuyukansky area. Numbers designate deposits: U - Tuyukanskoe (1), Sn - Nakhodka (2), Fe - Chistoe (3), Yazovskoe (4), Gremucheye (5), Sukhoe (6), Barchikhinskoe (7). N - number of rectilinear segments of lineaments and faults used to construct the rose-diagram.

Download (1MB)
8. Fig. 7. a-h - schemes of relative specific densities of lineaments by orientation intervals with identified trends (shown by bold lines of different colours) according to the method (Sivkov et al, 2020): a - 11°-34°; b - 33.5°-56.5°; c - 56°-79°; d - 78.5°-101.5°; e - 101°-124°; f - 123.5°-146.5°; g - 146°-169°; h - 168.5°-11.5°; i - relative density diagram of all identified trends and its interpretation with identification of large discontinuity zones; j - rose-diagram of lineament trends orientation; k - rose-diagram of orientation of fault zones identified as a result of lineament trends interpretation. 1-3 - deposits (a) and ore occurrences (b): 1 - U, 2 - Sn, 3 - Fe; 4-9 - ore occurrences: 4 - Au, 5 - Cu, 6 - Li, 7 - Ta and Nb, 8 - Ti, 9 - W; 10 - fault zones revealed as a result of interpretation of lineament trends; 11 - prospective Tuyukansky area. Numbers indicate deposits: U - Tuyukanskoye (1), Sn - Nakhodka (2), Fe - Chistoe (3), Yazovskoye (4), Gremucheye (5), Sukhoye (6), Barchikhinskoye (7). N - number of objects (trends and segments of inferred faults) used to construct the rose-diagram.

Download (1MB)
9. Fig. 8. Interpretation of the framework of the identified rupture faults of GGK O-49-XII sheet on the basis of P.L. Hancock's model (Hancock, 1985) with the help of ‘Lineament Stress Calculator’ software. a - scheme of the reconstruction of the orientation of the regional axes of maximum compression and tension, as well as the kinematics of rupture structures: 1 - trunk shears (Y); 2 - synthetic shears (R); 3 - antithetic shears (R'); 4 - secondary shears coinciding with trunk shears (P); 5 - secondary shears with inverse kinematics relative to trunk shears (X); 6 - tear-offs (T); 7 - swells (t); 8 - boundaries of prospective Tuyukansky area. b - interpretation of the rose-diagram of orientation of the identified lineament trends. c - interpretation of the rose-diagram of orientation of the fault zones identified by lineament trends. Blue arrows - orientation of the maximum compression axis; green arrows - orientation of the maximum extension axis.

Download (821KB)
10. Fig. 9. Results of calculation of shear tendency (μ) for segments of inferred and known rupture structures relative to reconstructed orientations of regional anisotropic stresses for: a - inferred faults identified on the basis of interpretation of lineament trends; b - extended lineaments identified by the operator; c - mapped rupture structures. On the rose-diagrams the orientation of segments of high permeability structures is shown in red colour. 1-3 - deposits (a) and ore occurrences (b): 1 - U, 2 - Sn, 3 - Fe; 4-7 - ore occurrences: 4 - Au, 5 - Cu, 6 - Ti, 7 - W; 8 - segments of increased permeability; 9 - permeable segments; 10 - medium permeability segments; 11 - weakly permeable segments; 12 - impermeable segments; 13 - orientation of the regional axis of maximum compression; 14 - orientation of the regional axis of maximum extension; 15 - boundaries of the prospective Tuyukan area.

Download (906KB)
11. Fig. 10. Reconstruction of the parameters of local stress-strain fields and stages of formation of the discontinuity framework in the Tuyukan ore node area. a - first stage, b - second stage, c - third stage. 1 - regional shear structures formed at a certain stage; 2 - regional swells; 3 - regional detachments; 4 - rupture structures formed at previous stages; 5 - synthetic spallation megafractures (R'); 6 - antithetical spalling megatracks (R); 7 - secondary local spalling (X); 8 - secondary local spalling (P); 9 - local detachments; 10 - local outbursts; 11-18 - orientation of structures and megatracks on rose-diagrams: main faults (11), antithetic chipping (12), synthetic chipping (13), secondary chipping X (14), secondary chipping P (15), detachments (16), outbursts (17), structures of other stages (18); 19 - boundaries of the prospective Tuyukan area; 20 - shear kinematics of structures; 21 - orientation of the axis of maximum compression; 22 - orientation of the axis of maximum extension.

Download (1MB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».