Prediction of Perspective Areas for Gold Mineralization Type Using the Data Set of Remote Sensing Satellite Harmonized Landsat Sentinel-2 on the Territory of the Northern End of the Eastern Slope of the Polar Urals

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

For the first time, an approach was applied to the processing of Earth remote sensing data for the territory of the northern end of the eastern slope of the Polar Urals. An approach is based the integration of maps of the distribution of hydrothermal alterations and the lineament density scheme, created on the basis of the results of statistical processing of remote sensing data and the digital elevation model Aster GDEM (Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model). The work was carried out with the aim of identifying morphological features and patterns, features of the deep structure and identifying areas promising for the gold type of mineralization in the study area. As a result of the study, two new perspective areas were delineated and new predictive and prospecting features of gold mineralization were identified within the study area: (1) areas promising for the gold ore type of mineralization should be sought along transregional fault zones that intersect favorable horizons and structures and control ore mineralization, and along the periphery of a large (97 by 76 km) bowl-shaped heterogenic-plutonic structure of the 1st order of complex structure and long-term development, developed above intracrustal magma chambers; (2) morphostructure should be complicated by ring and arc structures of the 2nd and lower order, as well as discontinuous faults of NW and NE directions with a length of more than 10 km, or weakened zones along which the introduction of intrusive bodies is recorded, genetically related to mineralization; (3) potentially ore-bearing volcanic structures should exhibit metasomatic halos of a significant area (more than 30 km2) with increased indices of ferric iron oxides (hematite) and iron oxides and hydroxides (limonite) and, to a lesser extent, hydroxyl-(Al-OH, Mg -OH), carbonate-containing minerals and oxides and oxides of ferrous iron.

Full Text

Restricted Access

About the authors

J. N. Ivanova

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry of the Russian Academy of Sciences; Peoples’ Friendship University of Russia

Author for correspondence.
Email: jnivanova@yandex.ru
Russian Federation, Moscow; Moscow

References

  1. Abdullah A., Akhir J. M., Abdullah I. Automatic Mapping of Lineaments Using Shaded Relief Images Derived from Digital Elevation Model (DEMs) in the Maran – Sungai Lembing Area, Malaysia // Electr. Jour. of Geotech. Engin. 2010. V. 15(6). P. 949–958.
  2. Aerospace methods of geological research / Ed. A.V. Pertsova. St. Petersburg: VSEGEI, 2000. 316 p. (in Russian).
  3. Ananiev Yu.S. Gold-concentrating systems of the Southern folded framing of the West Siberian plate (on the example of the Western Kalba). Dis. … dok.geol.-miner. Sciences. Tomsk, 2017, 509 p. (in Russian).
  4. Andreichev V.L., Kulikova K.V., Larionov A.N., Sergeev S.A. Age of island-arc granites in the Shchuch'ya zone, Polar Urals: first U–Pb (SIMS) results // Doklady Earth Sciences. 2017. Т. 477. № 1. P. 1260–1264.
  5. Bohlmanna U.M., Koller V.F. ESA and the Arctic - The European Space Agency's contributions to a sustainable Arctic // Acta Astronautica. 2020. V. 176. P. 33–39.
  6. Cheng Q., Jing, L., Panahi A. Principal component analysis with optimum order sample correlation coefficient for image enhancement // Intern. Jour.of Rem. Sen. 2006. V. 27(16). P. 3387-3401. doi: 10.1080/01431160600606882.
  7. Claverie M., Jub J., Masek J. G. et al. The Harmonized Landsat and Sentinel-2 surface reflectance data set // Remote Sensing of Environment. V. 219. 2018. P.145-161.
  8. Doxani G., Vermote E., Roger J.C. et al. Atmospheric correction inter-comparison exercise // Remote Sensing. 2018. 10(2). 352 p.
  9. Dushin V.A. Geological structure and magmatism of the Shchuchinsky megablock (Polar Urals) // News of the USGU. 2020. Issue. 4(60). P. 35-56. (in Russian).
  10. Farr T.G., Rosen P.A., Caro E., and et al. The shuttle radar topography mission // the American Geophysical Union. 2007. P. 1–33.
  11. Gornyy V.I., Kritsuk S.G., Latypov I.Sh., et al. Osobennosti mineralogicheskoy zonal'nosti rudno-magmaticheskikh sistem, vmeshchayushchikh kvartsevo-zhil'nyye mestorozhdeniya zolota (po materialam sputnikovoy spektrometrii) // Modern problems of remote sensing of the Earth from space. 2014. T. 11. № 3. P. 140–156 (in Russian).
  12. Gray J.E., Coolbaugh M.F. Geology and geochemistry of Summitville, Colorado: An Epitermal Acid Sulfate Deposit in a Volcanic Dome // Economic Geology. 1994. V. 89. – P. 1906–1923.
  13. Gupta R.P. Remote Sensing Geology, 3rd edn. Springer, Berlin, Germany, 2017. P. 180-190, 235-240, and 332-336.
  14. Hubbard B.E., Mack T.J., Thompson A.L. Lineament Analysis of Mineral Areas of Interest in Afghanistan. USGS Open. Reston, Virginia: U.S. Geological Survey. 2012. Available at: http://pubs.usgs.gov/of/2012/1048.
  15. Ivanova J.N., Nafigin I.O. Development of an approach for constructing a predictive map of the probabilistic distribution of high-permeability rocks zones for polymetallic mineralization type to data spacecraft Landsat-8 // Research of the Earth from space. 2023. No. 1. doi: 10.31857/S0205961423010062 (in Russian).
  16. Ivanova J.N., Vyhristenko R.I., Vikentiev I.V. Structural control of gold mineralization in the central part of the Malouralskiy volcano-plutonic belt (the Polar Urals) based on the analysis of multispectral images of the Landsat 8 spacecraft // Earth Research from Space. 2020. No. 4. P. 51–62. (in Russian).
  17. Ivanova J.N., Nafigin I.O. Application of the Landsat-8 data set and the SRTM digital elevation model to predict gold-base metal mineralization in the central part of the Little Ural zone, Polar Urals // Earth Research from Space. 2023. №6. P. 20–34. (in Russian).
  18. Ivanchenko G.N., Gorbunova E.M., Cheremnykh A.V. Some possibilities of lineament analysis when mapping faults of different ranks (using the example of the Baikal region) // Earth Research from Space. 2022. No. 3. P.66-83. (in Russian).
  19. Jensen J.R. Introductory Digital Image Processing: A remote sensing perspective // Pearson Prentice Hall, Upper Saddle River NJ 07458, 3-rd edn., 2005. P. 276–287 and 296–301.
  20. Jolliffe I.T. Principal component analysis. Department of Mathematical Sciences King’s College University of Aberdeen, Uk, 2-d edition., 2002. 487 p.
  21. Kalmykov B.A., Trusov A.A. Features of the internal structure of the Paleozoic complexes of the Shchuchinsky synclinorium of the Polar Urals according to airborne geophysical data // Exploration and protection of subsurface resources. 2015. P. 57–64. (in Russian).
  22. Korotkov V.V. Geochemical and other technologies, methods and techniques for forecasting and searching for deposits (mainly “hidden” type) // Federal State Budgetary Institution “VIMS”, 2023. 166 p. (in Russian).
  23. Krasinsky E.M., Kudryashov I.V. Scheme of preliminary comprehensive interpretation of geophysical materials. Scale 1:1000000, sheet Q 42. FSUE "VSEGEI", 2011. (in Russian).
  24. Lesnyak D.V., Ananiev Yu.S., Gavrilov R.Yu. Structural, geophysical and geochemical criteria for epithermal acid-sulfate gold mineralization on the example of the Svetloe ore field (Khabarovsk Territory) // Bulletin of the Tomsk Polytechnic University. Engineering of georesources. 2022. V. 333. No. 8. P. 60–72. (in Russian).
  25. Levochskaya D.V., Yakich T.Yu., Lesnyak D.V., Ananiev Yu.S. Hydrothermal-metasomatic zoning, fluid regime and types of gold mineralization in the Emi and Elena sites of the Svetloe epithermal ore field (Khabarovsk Territory) // Proceedings of the Tomsk Polytechnic University. Engineering of georesources. 2021. V. 333. No. 10. P. 17–34. (in Russian).
  26. Li Z., Zhang H.K., Roy D.P. Investigation of Sentinel-2 bidirectional reflectance hot-spot sensing conditions // IEEE Transactions on Geoscience and Remote Sensing. 2018.
  27. Litvinov T.P., Kudryavtsev I.V. Scheme of preliminary comprehensive interpretation of herphysical materials (updated). Scale 1:1000000. Sheet Q-42 (Salekhard). M.: FSUE “VSEGEI”, 2011.
  28. Loughlin W.P. Principal Component Analysis for Alteration Mapping // Photogramm. Eng. Remote Sens. 1991. V. 57 P. 1163–1169.
  29. Masek J.G., Claverie J., Ju. M. et al. Harmonized Landsat Sentinel-2 (HLS) Product User Guide. Product Version 2.0. 2018.
  30. Masek J.G., Vermote E.F., Saleous N.E. et al. A Landsat surface reflectance dataset for North America, 1990-2000 // IEEE Geoscience and Remote Sensing Letters. 2006. 3(1). P. 68–72.
  31. Mather P.M. Computer Processing of Remotely Sensed Images: An Introduction. Chichester, UK: John Wiley and Sons. 1999. 460 p.
  32. Maurer T. How to pan-sharpen images using the gram-Schmidt pan-sharpen method—a recipe. In: International archives of the photogrammetry, remote sensing and spatial information sciences, volume XL-1/W1. ISPRS Hannover workshop, Hannover, p. 21–2. Environmental Earth Sciences. 2013. 79:101.
  33. Milovsky G.A., Ishmukhametova V.T., Aparina A.D. Application of high-resolution satellite imagery in the search for coastal placers and hydrocarbon deposits in the northern seas of Russia // Earth Research from Space. 2021. No. 6. P. 74–82. 2021. (in Russian).
  34. Polyakova E.V., Kutinov Yu.G., Mineev A. L., Chistova Z.B. Analysis of the applicability of the ASTER GDEM v2 and ArcticDEM digital elevation models in research on Russia’s Arctic territories // Modern problems of remote sensing of the Earth from space. 2020. 17(7). P. 117-127. (In Russian).
  35. Puchkov V.N., Ivanov K.S. Tectonics of the northern Urals and Western Siberia: general history of development // Geotecto. 2020. No. 1. P. 41–61. (in Russian).
  36. Remizov D.N., Shishkin M.A., Grigoriev S.I. et al. State geological map of the Russian Federation. Scale 1:200,000 (2nd edition, digital). The Polar-Ural series. Sheet Q-41-XVI (Khordyus). Explanatory letter. St. Petersburg: Cartographic factory VSEGEI. 2014, 256 p. (In Russian).
  37. Roy D.P., Li J., Zhang H.K. et al. Examination of Sentinel-2A multispectral instrument (MSI) reflectance anisotropy and the suitability of a general method to normalize MSI reflectance to nadir BRDF adjusted reflectance // Remote Sensing of Environment. 2017. V. 199. P. 25-38.
  38. Roy D.P., Zhang H.K., Ju J. et al. A general method to normalize Landsat reflectance data to nadir BRDF adjusted reflectance // Remote Sensing of Environment. 2016. V. 176. P. 255–271.
  39. Selyukova T.N., Galiullin I.Z., Ivanovskaya G.P. et. al. Report on prospecting for gold along the Obskaya-Bovanenkovo highway. Report of the Kharbey team for 1996-1999, Polyarny village, Polar-Ural State Geological Enterprise, 1999. (in Russian).
  40. Serokurov, Yu.N., Kalmykov V.D., Gromtsev K.V. Remote assessment of the gold-bearing potential // Ores and metals. 2008. No. 1. P. 45–51. (in Russian).
  41. Sharkov E.V. Formation of layered intrusions and associated mineralization. M.: Scientific world, 2006, 368 p. (in Russian).
  42. Sharpenok L.N. Magmatogenic ring structures. Nedra, Leningrad, 1979, 231 p. (in Russian).
  43. Sharpenok L.N. Magmatogenic-ore systems of continental volcano-plutonic belts of mobile areas // Regional geology and metallogeny. 2014. No. 58. P. 84-90. (in Russian).
  44. Space information in geology / Ed. A.V. Peive. M.: Nauka, 1983. 536 p. (in Russian).
  45. State geological map of the Russian Federation. Scale 1:1000000 (3rd generation). Ural series. Sheet Q-41 – Vorkuta. Explain. zap. St. Petersburg: VSEGEI, 2007. 541 p. (in Russian).
  46. Thannoun R.G. Automatic Extraction and Geospatial Analysis of Lineaments and their Tectonic Significance in some areas of Northern Iraq using Remote Sensing Techniques and GIS // Intern. Jour. of enhanced Res. in Scien. Techn. & Engin. 2013. 2, 2. ISSN NO: 2319-7463.
  47. Thomson I.N, Kravtsov V.S., Kochneva N.T., Seredin V.V., Seliverstov V.A. Metallogeny of hidden lineaments and concentric structures. M.: Nedra, 1984. 272 p. (in Russian).
  48. Vaganov V.I., Ivankin P.F., Kropotkin P.N. Explosive ring structures of shields and platforms. M.: Nauka, 1985. 200 p. (in Russian).
  49. Vidyapin Yu.P., Bondar I.V. Possibilities of using lineament analysis of the earth’s surface topography for geodynamic studies on the example of the Caucasus region // Bulletin of the Moscow Society of Natural Scientists. Geological department. 2021. V.96. No. 21. P. 39-52. (in Russian).
  50. Verdiansyah O. A Desktop Study to Determine Mineralization Using Lineament Density Analysis at Kulon Progo Mountains, Yogyakarta and Central Java Province. Indonesia // Indonesian Journ. of Geography. 2019. 51, 1. P. 31–41.
  51. Verdiansyah O. Aplikasi Lineament Density Analysis Untuk Membatasi Pola Kaldera Purba Godean // Jour. Teknologi Technoscienti, 2017. 9(2).
  52. Vermote E., Justice C., Claverie M., Franch B. Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product // Remote Sensing of Environment. 2016. V.185. P 46-56.
  53. Vermote E.F., Kotchenova S. Atmospheric correction for the monitoring of land surfaces // Journal of Geophysical Research: Atmospheres. 2008. V. 113(D23).
  54. Wager L., Brown G. Layered igneous rocks // ed. V.P. Petrova, M.: Mir, 1970. 552 p. (in Russian).
  55. Wilson J.P., Gallant J.C. Terrain analysis: principles and applications // John Wiley & Sons. 2000. 520 р.
  56. Yakovlev G.F. Geological structures of ore fields and deposits. 1982, M.: Moscow University, 270 p.
  57. Zhu Z., Wang S., Woodcock C.E. Improvement and expansion of the Fmask algorithm: cloud, cloud shadow, and snow detection for Landsats 4-7, 8, and Sentinel 2 images // Remote Sensing of Environment. 2015. V. 159. P. 269–277.
  58. Zylyova L.I., Konovalov A.L., Kazak A.P., et al. State geological map of the Russian Federation. Scale 1:1000000 (third generation). Series West Siberian. Sheet Q-42 – Salekhard: Explanatory note. St. Petersburg: VSEGEI, 2014. 396 p. (In Russian).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Tectonic scheme of the Ural folded belt (according to Gosudarstvennaya..., 2007): 1 – Late Cambrian and Paleozoic formations of the West Ural structural megazone; 2 - Mesozoic–Cenozoic cover of the West Siberian Plate; 3-8 - East Ural megazone (Shchuchinskaya zone is localized above 66°30’ E and Voikarskaya - below 66°20’ E): 3 – Ordovician metamorphosed hyperbasites and gabbroids; 4 – Ordovician-Devonian volcanic and volcanogenic-sedimentary formations; 5 – Middle-Late Ordovician gabbroids and plagiogranitoids of the Hoypei complex; 6 – Early-Middle Devonian diorites and granitoids of the Yunyaga and Soba complexes; 7 – Early-Middle Devonian gabbroids, diorites and monzodiorites of the Kongor complex; 8 – Middle-Late Devonian granitoids of the Jurmenek and Yanoslor complexes; 9 – boundaries of the studied territory; 10 – GUR; 11 – main rivers and lakes; 12 – cities. The figures show: 1-5 – Rai-Iz massifs (1), Sium-Keu (2), Maslovsky (3), Yunyaginsky (4), Khorostosky (5), Sobsky uplift (6), Yanganape Ridge (7).

Download (401KB)
3. Fig. 2. Simplified geological map of the studied territory according to (Zyleva et al., 2014): 1-2 – reliable discontinuous faults: 1 – sharyazh, 2 – thrust and uplift (a), ore-controlling (b), 3 – suspected discontinuous faults: thrusts, uplift, thrusts and subductions, 4-28 – formations, strata and complexes: 4 – combined Khanmeikho and Laptayugan formations containing amphibolites with garnets, progneisses, rarely gneisses, lenses of marbles, ferruginous quartzites and gondites; 5 – the Miniseishor formation, including metabasalts, carbonaceous-sericite-quartzite-phyllite, chlorite-sericite-albite–quartz shales, interlayers of metapeschanics and meta–aleurolites; 6 – the Vaskeus complex with stocks and dikes of metagabrodolerites; 7 - the Parikvashor formation with crystal shales, shales and plagiogneisses; 8 - Harbey -Soba complex with diorites and quartz diorites; 9 – the Syadatayakhinsky complex with granites and montzogranites, granite dikes; 10 – the Yevyugansky complex with metagranites and meta–alaskites; 11 - the Khartmanyushorsky complex with serpentinite dikes; 12 – combined Miniseyskaya and Khoydyshorskaya formations with conglomerates, sandstones, gravelites, siltstones and quartzites; 13 – combined Orangskaya, Usinskaya and Malopaipudynskaya formations, including phyllites, carbonaceous quartz shales, siltstones, conglomerates, gravelites, interlayers and lenses of siltstones, sandstones, marbled and silty limestones, tholeiitic basalts; 14th Khanteiskaya formation with marbled limestones, shales, and siltstones; 15 – combined Sium-Keusky and Rayizko-Voykarsky complexes with dunites, lherzolites, and harzburgites; 16 – the Slyudyanogorsk complex with metaultramafites; 17 – the Malokhadatinsky complex, including verlites, dunites, clinopyroxenites and websterites; 18 – the Malyk complex with metagabbro, apogabbro amphibolites; 19 – the Kharampeysko-Maslovsky complex, containing gabbro and gabbronorites; 20 – combined Yanganapei and carbonate strata with basalts, andesibasalts, dacites, rhyodacites, plagioriolites and their tuffs, interlayers, and lenses of sandstones, gravelites, limestones, and conglomerates; 21 – combined siliceous-limestone and limestone strata, including layered limestones, conglomerates, breccias and bauxite lenses; 22-23 – the first and second phases of the Yunyaginsky complex with gabbro, diorites and granodiorites; 24 – combined Yeneor and Talbey strata with sandstones, siltstones, mudstones, conglomerates, gravelites, interlayers and lenses of limestones, radiolarites, lavas of trachybasalts, lenses of ash tuffites; 25 – combined carbonate-sandstone, carbonate and terrigenous-limestone strata with calcareous sandstones, mudstones, siltstones, conglomerates, gravelites, limestones, single lenses of marls and ash tuffites, 26 – combined Yany-Manyinskaya and Tolinskaya formations with sands, gravels, pebbles, conglomerates and layers of brown coal; 27 – combined teuntoishaya and the Laborovskaya formation with variegated sands, siltstones and conglomerates; 28 – the combined Severososvinsk and Yarong formations, including sands, sandstones, siltstones with layers of siltstone and carbonaceous clays and layers of brown coal; 29-30 – various extra-scale bodies of dikes of basic (29) and acid (30) composition, which are associated with manifestations of Mo, Au, As and Cu mineralization; 31 – zone of beresitization; 32-38 – deposits (a), ore occurrences and mineralization points (b): 32 – Mo, 33 – Fe, 34 – Au, Au–Fe, 35 – Cu, 36 – Pb–Zn, 37 – As–Mo–Au, 38– Ti. Note: the number 1 indicates the Yunyaginskoye field (for an explanation, see in the text).

Download (1MB)
4. Fig. 3. Maps of TILT transformants of the anomalous magnetic field (a) and gravity field (b) (according to Litvinov and Kudryavtsev, 2011): 1 – ring and arc structures identified by the TILT transformant of gravitational field anomalies, 2 – disturbance lines of geophysical anomalies presumably associated with deep faults (discontinuous faults 1st order), 3 – lines of correlation disturbance, presumably related to discontinuous violations of the 2nd order (discontinuous violations with a length of more than 10 km were detected). Note: the color scale of the values is given in conventional units from -1.75 to 1.75, where red corresponds to the minimum values, and blue to the maximum (a), red to the maximum values, and blue to the minimum (b).

Download (647KB)
5. Fig. 4. Internal structure of the Shchuchinsk synclinorium in the local component of the magnetic field (according to Kalmykov and Trusov, 2015): 1 – Khanmei-Sibiley fault zone, 2 – GUR, 3-4 – faults: main (3), secondary (4), 5-6 – contours of intrusive massifs: sium-keusky (5), Kharampeysko-Maslovsky (6). The numbers show the intrusive arrays: 1 – Sium-Keu, 2 – Maslovsky, 3 – Khorostosky.

Download (1MB)
6. Fig. 5. DEM and the lineaments allocated according to it for the research area: 1 – lineaments.

Download (1MB)
7. Fig. 6. Morphostructural map of the study area obtained from the data of the HLS-2 spacecraft and DEM (a) spacecraft and the HLS-2 spacecraft in natural colors (RGB 4-3-2) with superimposed structures taken from the scheme of preliminary complex interpretation of geophysical materials by (Kalmykov and Trusov, 2015) and from the map of the magnetic field anomaly of the Paleozoic complexes of the Shchuchinsk synclinorium according to (Litvinov and Kudryavtsev, 2011) (b): 1-3 – radial and arc-shaped, annular lineaments obtained from the HLS-2 and CMR (3) spacecraft, 4-8 – structures isolated from geophysical data: 4 – GUR, 5 – annular and arc anomalies of the gravitational field (AGP) identified by the TILT transformant, 6 – Hanmei-Sibiley fault zone; 7 – lines of correlation disturbance of geophysical anomalies presumably associated with deep faults (discontinuous disturbances of the 1st order); 8 – lines of correlation disturbance presumably associated with discontinuous disturbances of the 2nd order, lineaments with a length of more than 10 km are shown on the map; 9 is a paleovolcanic apparatus of the central type (morphostructure of the 1st order), 10 are arc structures of the 2nd order; 11-17 correspond to Fig. 2, 18-19 – dikes of basic (19) and acidic (b) composition. The rose diagram is compiled for the lineaments selected manually by the HLS-2 spacecraft and DEM (b).

Download (1MB)
8. Fig. 7. Schemes of development of associations of secondary minerals for the studied area, obtained as a result of the treatment of CS with HLS-2: a – hydroxyl-(Al-OH, Mg-OH) and carbonate-containing, b – oxides of trivalent iron (hematite), c – oxides and hydroxides of iron (limonite), g – ferric oxides (magnetite). The concentrations of the indicator groups of hydrothermal changes are shown by colored dots: the minimum is yellow, the average is orange and the maximum is red, the lines indicate the contours of the maximum concentrations (thickening points) of secondary changes.

Download (962KB)
9. Fig. 8. Combined scheme of development of associations of secondary minerals for the studied area as a result of the processing of CS by remote sensing spacecraft HLS-2. 1 – oxides and hydroxides of iron (limonite), 2 – hydroxyl(Al-OH, Mg-OH) and carbonate-containing minerals, 3 – oxides of divalent iron (magnetite), 4 – oxides of trivalent iron (hematite).

Download (799KB)
10. Fig. 9. The density scheme is based on manually selected lineaments for the studied and adjacent territory with prospective areas of the gold ore type of mineralization: 1-9 correspond to Fig. 2; 10-15 – secondary changes: 10 – hydroxyl-(Al-OH, Mg-OH) and carbonate-containing, 11 – ferric oxides (hematite), 12 – oxides and hydroxides of iron (limonite), 13 – oxides of ferrous iron (magnetite), 14-15 – boundaries: 14 – areas, highlighted according to the materials of the CC CADZ HLS-2 (numbers I-II on the map – see explanations in the text), 15 – the studied territory. The scale shows the zones with the maximum (red) and minimum (blue) lineament densities.

Download (775KB)
11. Fig. 10. The scheme of development of hydrothermal-metasomatic rocks for the studied area, obtained from the materials of the HLS-2 remote sensing spacecraft and placed on a simplified geological map, according to (Zyleva et al., 2014): 1-38 – correspond to Fig. 2; 39-42 – secondary changes correspond to Fig. 8; 43 – area boundaries, highlighted based on the materials of the HLS-2 remote sensing spacecraft (numbers I–II on the map – see explanations in the text).

Download (1MB)
12. Fig. 11. The diagram of the forecast of the PI and productivity of ore regions and nodes for sheet Q-42 according to (Litvinov and Kudryavtsev, 2011) is simplified: 1 – high productivity, a large deposit of the PI complex profiling for the node (or area) has been established (or is predicted), 2 – average – the average has been established (or is predicted). the profile field for the node (or area), 3 – the boundaries of the areas allocated based on the materials of the Remote sensing spacecraft HLS-2. The letters show the type of raw materials and the category of resources: a – Pb (P3 – 125 thousand tons), Zn (P3 – 12.5 thousand tons), Cu (P3 – 32.5 thousand tons), b – Au (P3 – 20 tons), c – Cr (P3 – 5.5 million tons t), g – Au (P3 – 22 tons), d – Cr (P3 – 10 million tons), e – Au (P3 – 25 tons, P2 – 78 tons, P1 – 38.5 tons), Fe (P3 – 23.6 thousand tons, P2 – 70 thousand tons, P1 – 18 thousand tons), w – Fe (P3 – 140 thousand tons), Au (P3 – 60 tons).

Download (221KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».