Studying Aftermath of the Strong 2019 Raikoke Volcano Eruption in Central Kuril Islands Using Satellite Data
- Authors: Bondur V.G.1, Voronova O.S.1
-
Affiliations:
- AEROCOSMOS Research Institute for Aerospace Monitoring
- Issue: No 6 (2024)
- Pages: 38-51
- Section: ИСПОЛЬЗОВАНИЕ КОСМИЧЕСКОЙ ИНФОРМАЦИИ О ЗЕМЛЕ
- URL: https://journal-vniispk.ru/0205-9614/article/view/281596
- DOI: https://doi.org/10.31857/S0205961424060037
- EDN: https://elibrary.ru/RQUZJL
- ID: 281596
Cite item
Abstract
Spatiotemporal distribution of sulfur dioxide content during the strong 2019 Raikoke stratovolcano eruption was studied using satellite data. The total mass of SO2 emitted at an altitude of 15 km was determined. The influence of stratospheric aerosols on the Earth’s ozone layer was assessed, and changes in ozone content in the atmospheric column were detected based on the analysis of multiannual time series of aerosol optical depth change. The values of aerosol optical depth increased (up to 2.3), which was related to the active transformation of sulfur dioxide into the sulfuric acid and the generation of sulfate aerosols. A sharp decrease in ozone content (by 73 DU) was detected after the end of volcanic activity, which was followed by a significant decrease in temperatures in the stratosphere (by 8–17°C). It was found that increased values of the extracted mass of SO2 persisted for several days after the eruption and then decreased exponentially with time. Changes in the total ozone content in the atmospheric column were consistent with variations in temperatures in the stratosphere.
Full Text

About the authors
V. G. Bondur
AEROCOSMOS Research Institute for Aerospace Monitoring
Author for correspondence.
Email: office@aerocosmos.info
Russian Federation, Moscow
O. S. Voronova
AEROCOSMOS Research Institute for Aerospace Monitoring
Email: office@aerocosmos.info
Russian Federation, Moscow
References
- Bourassa A.E., Zawada D.J., Rieger L.A., Warnock T.W., Toohey M., Degenstein D.A. Tomographicretrievals of Hunga Tonga-Hunga Ha’apaivolcanic aerosol // Geophysical ResearchLetters, 2023. 50, e2022GL101978. https://doi.org/10.1029/2022GL101978
- Cai Z., Griessbach S., Hoffmann L. Improved estimation of volcanic SO2 injections from satellite retrievals and Lagrangian transport simulations: the 2019 Raikoke eruption // Atmos. Chem. Phys., 2022. 22, 6787–6809, https://doi.org/10.5194/acp-22-6787-2022
- Chouza F., Leblanc T., Barnes J., Brewer M., Wang P., Koon D. Long-term (1999–2019) variability of stratospheric aerosol over Mauna Loa, Hawaii, as seen by two co-located lidars and satellite measurements, // Atmos. Chem. Phys., 2020. 20, 6821–6839, https://doi.org/10.5194/acp-20-6821-2020
- Clarisse L., Coheur P.-F., Theys N., Hurtmans D., Clerbaux C. The 2011 Nabro eruption, a SO2 plume height analysis using IASI measurements // Atmos. Chem. Phys., 2014. 14, 3095–3111, https://doi.org/10.5194/acp-14-3095-2014.
- de Leeuw J., Schmidt A., Witham C. S., Theys N., Taylor I. A., Grainger R. G., Pope R.J., Haywood J., Osborne M., Kristiansen N.I. The 2019 Raikoke volcanic eruption – Part 1: Dispersion model simulations and satellite retrievals of volcanic sulfur dioxide // Atmos. Chem. Phys., 2021. 21, 10851–10879, https://doi.org/10.5194/acp-21-10851-2021,
- Divinskii L. I., Ivlev L.S. O vode i aerozolyah vulkanicheskogo proishojdeniya v visokih sloyah atmosferi // Prirodnaya Sreda. 2012. №4 (25), pp. 254–261 (in Russian)
- Fedotov S.A. Magmaticheskiye pitayushchiye sistemy i mekhanizm izverzheniy vulkanov (Magmatic feeding systems and the mechanism of volcanic eruptions.). Moscow: Nauka, 2006. 455 p.
- Fedotov S.A. Vulkanizm i seysmichnost, nauka, obshchestvo, sobytiya i zhizn (statyi, besedy i vystupleniya 1952–2002 gg. (Volcanism and seismicity, science, society, events and life (Articles, talks and speeches (1952 – 2002)). Petropavlovsk-Kamchatsky: Novaya Kniga Holding Publ., 2003. 184 p., illustrated ISBN5-87750-101-1
- Fisher B.L., Krotkov N.A., Bhartia P.K., Li C., Carn S.A., Hughes E., Leonard P.J.T. A new discrete wavelength backscattered ultraviolet algorithm for consistent volcanic SO2 retrievals from multiple satellite missions // Atmos. Meas. Tech., 2019. 12, 5137–5153, https://doi.org/10.5194/amt-12-5137-2019
- Forster P., Ramaswamy V., Artaxo P., Berntsen T., Betts R., Fahey D., Haywood J., Lean J., Low D., Myhre G., Nganga J., Prinn R., Raga G., Schulz M., Dorland R.V. Changes in Atmospheric Constituents and in Radiative Forcing, in: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K., Tignor, M., and Miller, H., 129–234, Cambridge University Press, United Kingdom and New York, NY, USA, 2008.
- Girina O.A., Gordeev E.I. KVERT project: reduction of volcanic hazards for aviation from explosive eruptions of Kamchatka and Northern Kuriles volcanoes // Institute of Volcanology and Seismology FED RAS, 2007. № 2 (132). С. 100–109 (in Russian)
- Girina O.A., Manevich A.G., Melnikov D.V., Nujdaev A.A., Lupyan E.A. Aktivnost vulkanov Kamchatki i Kurilskih ostrovov v 2019 g. i ih opasnost dlya aviacii // Vulkanizm i svyazannie s nim processi. Materiali XXIII ejegodnoi nauchnoi konferencii_ posvyaschennoi Dnyu vulkanologa_ 2020 g. – Petropavlovsk_Kamchatskii_ IViS DVO RAN_ 2020. P. 11_14.
- Girina O.A. On precursor of Kamchatkan volcanoes eruptions based on data from satellite monitoring // J. Volcanolog. Seismol. 6, 142–149. 2012. https://doi.org/10.1134/S0742046312030049
- Gordeev E.I., Girina O.A. Volcanoes and the threat they pose for aircraft // Vestnik Rossiiskoi Akademii Nauk, 2014, vol. 84, no. 2, pp. 134–142. https://doi.org/10.7868/S0869587314020121
- Gorkavyi N., Krotkov N., Li C., Lait L., Colarco P., Carn S., DeLand M., Newman P., Schoeberl M., Taha G., Torres O., Vasilkov A., Joiner J. Tracking aerosols and SO2 clouds from the Raikoke eruption: 3D view from satellite observations // Atmos. Meas. Tech., 2021. 14, 7545–7563, https://doi.org/10.5194/amt-14-7545-2021,
- Guffanti M., Casadevall T.J., Budding K. Encounters of aircraft with volcanic ash clouds: a compilation of known incidents, 1953–2009 // U.S. Geological Survey Data Series 545, 2010. ver. 1.0, 12 p., plus 4 appendixes including the compilation database.
- Haywood J. M., et al., Observations of the eruption of the Sarychev volcano and simulations using the HadGEM2 climate model // J. Geophys. Res., 2010. 115, D21212, https://doi.org/10.1029/2010JD014447
- Ivlev L.S., Kolosov A.S., Terokhin S.N. Eruptivnyye vulkanicheskiye protsessy: mekhanizmy i kharakteristiki (Eruptive volcanic processes: Mechanisms and characteristics) //Vestnik Sankt-Peterburgskogo universiteta, 2008. Vol. 4, No 2. pp.35–48. (In Russian).
- Jethva H., Torres, O. Satellite-based evidence of wavelength-dependent aerosol absorption in biomass burning smoke inferred from Ozone Monitoring Instrument // Atmos. Chem. Phys., 2011. 11, 10541–10551, https://doi.org/10.5194/acp-11-10541-2011
- Khaykin S. et al. Global perturbation of stratospheric water and aerosol burden by Hunga eruption // Commun. Earth Environ. 2022a. 3, 316. https://doi.org/10.1038/s43247- 022-00652-x
- Khaykin S.M., de Laat A.T.J., Godin-Beekmann S. et al. Unexpected self-lofting and dynamical confinement of volcanic plumes: the Raikoke 2019 case // Sci Rep. 2022b. 12, 22409 https://doi.org/10.1038/s41598-022-27021-0
- Kloss C., Berthet G., Sellitto P., Ploeger F., Taha G., Tidiga M., Eremenko M., Bossolasco A., Jégou, F., Renard J.-B., Legras B. Stratospheric aerosol layer perturbation caused by the 2019 Raikoke and Ulawun eruptions and their radiative forcing // Atmos. Chem. Phys., 2021. 21, 535–560, https://doi.org/10.5194/acp-21-535-2021
- Kondratyev K.Ya. Kompleksnyy monitoring posledstviy izverzheniya vulkana Pinatubo (Comprehensive monitoring of the consequences of the eruption of Mount Pinatubo) // Issledovaniya Zemli iz kosmosa. 1993. No. 1., pp. 111–122 (In Russian).
- Kondratyev K.Ya., Ivlev L.S., Krapivin V.F. Svoystva, protsessy obrazovaniya i posledstviya vozdeystviy atmosfernogo aerozolya: ot nano – do global’nykh masshtabov (Properties, formation processes and consequences of atmospheric aerosol impacts: from nano to global scales). Saint Petersburg: 2007. VVM Publ., 858 p. (In Russian).
- Krotkov N. A., et al. Validation of SO2 retrievals from the Ozone Monitoring Instrument over NE China // J. Geophys. Res., 2008. 113, D16S40, https://doi.org/10.1029/2007JD008818
- Laverov N.P., Dobretsov N.L., Bogatikov O.A., Bondur V.G. et. al. Modern and Holocene volcanism in Russia / Ed. by N.P.Laverov. Moscow: Nauka, 2005. 604 p. (In Russian).
- Lu J., Lou S., Huang X., Xue L., Ding K., Liu T., et al. Stratosphericaerosol and ozone responses to theHunga Tonga-Hunga Ha’apai volcaniceruption // Geophysical Research. 2023. Letters,50, e2022GL102315. https://doi.org/10.1029/2022GL102315
- Manevich A.G., Girina O.A., Melnikov D.V., Bril A.A., Romanova I.M., Sorokin A.A., Kramareva L.S., Korolev S.P. Klyuchevskoy volcano eruptions in 2023–2024 based on remote sensing data in the VolSatView information system // Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa 2024. Т. 21. № 3. С. 94–103. (in Russian)
- Marshall L.R., Maters E.C., Schmidt A. et al. Volcanic effects on climate: recent advances and future avenues // Bull Volcanol. 2022. 84, 54. https://doi.org/10.1007/s00445-022-01559-3
- Melnikov D.V., Ushakov S.V. Monitoring atmosfernogo soderzhaniya SO2 pri krupnykh izverzheniyakh vulkanov Kamchatki za 2007 g. posredstvom sputnikovykh metodov issledovaniy (Monitoring of atmospheric SO2 content during large volcanic eruptions in Kamchatka in 2007 using satellite research methods) // Proceedings of Conference “Geofizicheskiy monitoring i problemy seysmicheskoy bezopasnosti Dal’nego Vostoka Rossii”. Petropavlovsk-Kamchatsky: Russian Academy of Sciences, Kamchatca Branch Publ., 2008. Vol. 1, pp. 101–104. (In Russian).http://www.emsd.ru/konf071112/pdf/t1/str101.pdf
- Muser L.O. et al. Particle aging and aerosol–radiation interaction affect volcanic plume dispersion: Evidence from the Raikoke 2019 eruption // Atmos. Chem. Phys. 20, 2020. 15015–15036. https://doi.org/10.5194/acp-20-15015-2020
- Ozerov A.Y., Girina O.A., Zharinov N.A. et al. Eruptions in the Northern Group of Volcanoes, in Kamchatka, during the Early 21st Century. // J. Volcanolog. Seismol. 14, 1–17. 2020. https://doi.org/10.1134/S0742046320010054
- Pardini F., Burton M., Arzilli F., La Spina G., Polacci M. SO2 emissions, plume heights and magmatic processes inferred from satellite data: The 2015 Calbuco eruptions // Journal of Volcanology and Geothermal Research, 2018. 361, 12–24. https://doi.org/10.1016/j.jvolgeores.2018.08.001
- Platt U., Stutz J. Differential optical absorption spectroscopy – Springer–Verlag, New–York, Berlin, Heidelberg, 2008. – 593 p
- Rasch P.J., Tilmes S., Turco R.P., Robock A., Oman L., Chen C.-C., Stenchikov G.L., Garcia R.R. An overview of geoengineering of climate using stratospheric sulphate aerosols, Philos. T. Roy. Soc. A, 2008. 366, 4007–4037. https://doi.org/10.1098/rsta.2008.0131
- Rashidov V.A., Girina O.A., Ozerov A.Yu., Pavlov N.N. The June 2019 Eruption of Raikoke Volcano (The Kurile Islands) // Bulletin of Kamchatka Regional Association “Educational-Scientific Center”. Earth sciences. Issue 42. No. 2. 2019, pp. 5–8. https://doi.org/10.31431/1816-5524-2019-2-42-5-8
- Reed B.E., Peters D.M., McPheat R., Grainger R.G. The Complex Refractive Index of Volcanic Ash Aerosol Retrieved аrom Spectral Mass Extinction // J. Geophys. Res. Atmos. 2018, 123, pp. 1339–1350, https://doi.org/10.1002/2017JD027362
- Robock A. Volcanic eruptions and climate // Rev. Geophys., 2000. 38, 191–219, https://doi.org/10.1029/1998RG000054
- Romero J.E., Morgavi D., Arzilli F., Daga R., Caselli A., Reckziegel F., Perugini D. Eruption dynamics of the 22–23 April 2015 Calbuco Volcano (Southern Chile): Analyses of tephra fall deposits // Journal of Volcanology and Geothermal Research, 2016. 317, 15–29. https://doi.org/10.1016/j.jvolgeores.2016.02.027
- Rybin A., Chibisova M., Webley P., Steensen T., Izbekov P., Neal C., Realmuto V.Satellite and ground observations of the June 2009 eruption of Sarychev Peak volcano, Matua Island, Central Kuriles // Bull. Volcanol., 2011. 73(9), 1377–1392, https://doi.org/10.1007/s00445-011-0481-0
- Sato M., Hansen J.E., McCormick M.P., Pollack J.B. Stratospheric aerosol optical depths, 1850–1990 // J. Geophys. Res. 1993. 98, 22987. https://doi.org/10.1029/93JD02553
- Sawamura P., et al. Stratospheric AOD after the 2011 eruption of Nabro volcano measured by lidars over the Northern Hemisphere, Environ. Res. Lett., 2012. 7(3), 034,013, https://doi.org/10.1088/1748-9326/7/3/034013
- Semenov S.M., Izrael Yu.A., Gruza G.V., Rankova E.Ya. Izmeneniya globalnoi temperaturi i regionalnie riski pri nekotorih stabilizacionnih scenariyah antropogennoi emissii dioksida ugleroda i metana. V kn. Izmenenie okrujayuschei sredi i klimata prirodnie i svyazannie s nimi tehnogennie katastrofi. T. 6: izmeneniya klimata vliyanie zemnih i vnezemnih faktorov / Otv. red. G.S. Golitsyn. M.: IFA RAN, IFZ RAN, 2008. 24–36. (In Russian).
- Stenchikov G., Delworth T.L., Ramaswamy V., Stouffer R.J., Wittenberg A., Zeng F. Volcanic signals in oceans // J. Geophys. Res., 2009. 114, D16104, https://doi.org/10.1029/2008JD011673
- Stenchikov G., Ukhov A., Osipov S., Ahmadov R., Grell G., Cady-Pereira K., Mlawer E., Iacono M. How Does a Pinatubo-Size Volcanic Cloud Reach the Middle Stratosphere? // J. Geophys. Res.–Atmos., 2021. 126, e2020JD033829, https://doi.org/10.1029/2020JD033829
- Theys N., De Smedt I., Yu H., Danckaert T., van Gent J., Hörmann C., Wagner T., Hedelt, P., Bauer H., Romahn F., Pedergnana M., Loyola D., Van Roozendael M. Sulfur dioxide retrievals from TROPOMI onboard Sentinel-5 Precursor: algorithm theoretical basis // Atmos. Meas. Tech., 2017. 10, 119–153, https://doi.org/10.5194/amt-10-119-2017
- Thompson D.W., Solomon S. Understanding recent stratospheric climate change, J. Climate, 2009. 22, 1934–1943, https://doi.org/10.1175/2008JCLI2482.1
- Thordarson Th., Self S., Atmospheric and environmental effects of the 1783 – 1784 Laki eruption: A review andreassessment // J. Geophys. Res., 2003. 108(D1), 4011, https://doi.org/10.1029/2001JD002042
- Toohey M., Krüger K., Schmidt H., Timmreck C., Sigl M., Stoffel M., Wilson R. Disproportionately strong climate forcing from extratropical explosive volcanic eruptions // Nat. Geosci., 2019. 12, 100–107, https://doi.org/10.1038/s41561-018-0286-2
- Veefkind P., Sneep M. OMDOA03 README FILE: http://disc.sci.gsfc.nasa.gov/Aura/data-holdings/OMI/ documents/v003/OMDOAO3 README V003.shtml (last access: 14 January 2012), 2009.
- Vermote E.F., Roger J.C., Ray J.P. MODIS Surface Reflectance User’s Guide Collection 6. [Accessed 23 June 2016]; 2015 May; http://modis-sr.ltdri.org/guide/MOD09_UserGuide_v1.4.pdf
- von Savigny C., Timmreck C., Buehler S.A., Burrows J.P., Giorgetta M., Hegerl G., Horvath A., Hoshyaripour G. A., Hoose C., Quaas J., Malinina E., Rozanov A., Schmidt H., Thomason L., Toohey M., Vogel B.: The Research Unit VolImpact: Revisiting the volcanic impact on atmosphere and climate – preparations for the next big volcanic eruption // Meteorol. Z., 2020. 29, 3–18, https://doi.org/10.1127/metz/2019/0999
- Watson E.J., Swindles G.T., Stevenson J.A., Savov I., Lawson I.T. The transport of Icelandic volcanic ash: Insights from northern European cryptotephra records // Journal of Geophysical Research: Solid Earth, 2016. 121, 7177–7192. https://doi.org/10.1002/2016JB013350
- Wells A.F., Jones A., Osborne M., Damany-Pearce L., Partridge D.G., Haywood J.M.: Including ash in UKESM1 model simulations of the Raikoke volcanic eruption reveals improved agreement with observations // Atmos. Chem. Phys., 2023, 3985–4007, https://doi.org/10.5194/acp-23-3985-2023
- Yang K., Liu X., Bhartia P.K., Krotkov N.A., Carn S.A., Hughes E.J., Krueger A.J., Spurr R.J.D., Trahan S.G. Direct retrieval of sulfur dioxide amount and altitude from spaceborne hyperspectral UV measurements: Theory and application // J. Geophys. Res., 2010. 115, D00L09, https://doi.org/10.1029/2010JD013982
- Zuev V.V. Zueva N.E. Volcanogenic disturbances of the stratosphere as the principle regulator of the long-term behavior of the ozonosphere from 1979 to 2008 // Opt. Atmos. Okeana 24 (1), 30–34. 2011. (In Russian).
Supplementary files
