Thermokarst Lakes of Taiga and Tundra Zones of the Siberian Arctic Based on Kanopus-V and Sentinel-2 Images

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The patterns of size distribution of thermokarst lakes in the tundra and taiga Arctic zones of northeastern Siberia were studied based on space images from the Kanopus-V and Sentinel-2 satellites (with spatial resolution of 2.1 and 20 m, respectively) acquired in the summer months of 2017–2021. Lakes were interpreted on a mosaic of Sentinel-2 satellite images and on 16 test plots on Kanopus-V images in order to determine the number of lakes and their areas within each of the specified zones. Experimental histograms of distribution of the number and total areas of lakes by their sizes were obtained for the studied tundra and taiga zones in an extremely wide range of lake sizes from 50 to 108 m2 based on the integration of data from images of different spatial resolution. The histograms of the distribution of the number of lakes by their sizes demonstrate a similar behavior in both zones, manifested in the growth of the number of lakes as their sizes decrease. It is shown that the main contribution to the total area of lakes is made by large lakes (more than 200,000 m2), the share of which exceeds 80% of the total area of lakes (in the tundra 82%, in the taiga zone 85%). The contribution of small lakes (less than 500 m2) to the total area of Arctic lakes in both tundra and taiga zones is negligible and does not exceed 0.20–0.17%, respectively. The characteristics of lake density and the degree of lake coverage of the studied territories were studied. It is shown that the lake coverage and density in the tundra is 2 and 2.5 times higher than in the taiga zone.

Texto integral

Acesso é fechado

Sobre autores

I. Muratov

Ugra Research Institute of Information Technologies

Email: yupolishchuk@gmail.com
Rússia, Khanty-Mansiysk

Yu. Polishchuk

Ugra Research Institute of Information Technologies

Autor responsável pela correspondência
Email: yupolishchuk@gmail.com
Rússia, Khanty-Mansiysk

Bibliografia

  1. Viktorov A.S., Kapralova V.N., Orlov T.V., Trapeznikova O.N., Arkhipova M.V., Berezin P.V., Zverev A.V., Panchenko E.N., Sadkov S.A. Zakonomernosti raspredeleniya razmerov termokarstovykh ozer [Consistent patterns of the size distribution of thermokarst lakes] //Doklady Earth Sciences. 2017. V. 474. № 2. P. 692694. doi: 10.1134/S1028334X17060162.
  2. Gavrilov A.V., Zamolotchikova S.A. Sovremennye prirodnye usloviya razvitiya sezonno- i mnogoletnemerzlykh porod. Klimat [Current natural conditions of development of seasonally and permafrost rocks. Climate] // Geokriologiya SSSR. Vostochnaya Sibir’ i Dal’nii Vostok. Moscow: Nedra, 1989. P. 31–48 (In Russian).
  3. Gudilin I.S. Landshaftnaja karta SSSR (1:2500000) (Landscape map of the USSR), Moscow: Gidrospetsgeologiya, 1987. 16 p. (In Russian).
  4. Kravtsova V.I., Rodionova T.V. Issledovanie dinamiki ploshchadi i kolichestva termokarstovykh ozer v razlichnykh raionakh kriolitozony Rossii po kosmicheskim snimkam [Investigation of the dynamics in area and number of thermokarst lakes in various regions of Russian cryolithozone, using satellite images] // Kriosfera Zemli. 2016. № 1. P. 81–89. (In Russian).
  5. Muratov I.N., Baysalyamova O.A., Polishchuk Y.M. Study of Thermokarst Lake Size Distribution in the Eastern Part of the Russian Arctic Based on Combining Sentinel-2 and Kanopus-V Images // Izvestiya, Atmospheric and Oceanic Physics. 2023. V. 59. № 10. P. 1459–1464. doi: 10.1134/S0001433823120150.
  6. Polishchuk Y.M., Bogdanov A.N., Bryksina N.A., Muratov I.N., Polishchuk V.Y. Integratsiya kosmicheskikh snimkov sverkhvysokogo i srednego razresheniya dlya postroeniya gistogramm raspredeleniya ploshchadei termokarstovykh ozer v rasshirennom diapazone ikh razmerov [Integration of high and medium resolution space images for histograms of the thermokarst lake area distribution in the extended range of their sizes] //Sovremennye problemy distantsionnogo zondirovaniia Zemli iz kosmosa. 2018. V. 16. № 3. P. 9–17. (In Russian). doi: 10.21046/2070-7401-2018-15-3-9-17.
  7. Polischuk Y.M., Muratov I.N. Termokarstovye ozera Chukotskoi tundry po snimkam Sentinel-2 [Thermokarst lakes of the Chukchi tundra as observed in Sentinel-2 images] // Sovremennye problemy distantsionnogo zondirovaniia Zemli iz kosmosa. 2023. V. 20. № 4. P. 205–213. (In Russian).doi: 10.21046/2070-7401-2023-20-4-205-213.
  8. Polishchuk Y.M., Polishchuk V.Y., Bryksina N.A., Pokrovskii O.S., Kirpotin S.N., Shirokova L.S. Metodicheskie voprosy otsenki zapasov metana v malykh termokarstovykh ozerakh kriolitozony Zapadnoi Sibiri [Methodological issues of evaluating methane capacity in small thermokarst lakes of Western Siberiapermafrost] //Izvestiya Tomskogo politekhnicheskogo universiteta. 2015. V. 326. № 2. P. 12–135. (In Russian).
  9. Fedorov A.N., Torgovkin Y.I., Shestakova A.A. et al. Merzlotno-landshaftnaya karta Respubliki Sakha (Yakutiya). Masshtab 1: 1 500 000 [Permafrost-landscape map of the Republic of Sakha (Yakutia) 1: 1 500 000] / Edited by M.N. Zheleznyak. Yakutsk: IMZ SO RAN, 2018, 2 p. (In Russian).
  10. Holgerson M.A., Raymond P.A. Large contribution to inland water CO2 and CH4 emissions from very small ponds //Nature Geoscience Letters. 2016. V. 9. P. 222–226.doi: 10.1038/ngeo2654.
  11. Messager M. L., Lehner B., Grill G., Nedeva I., Schmitt O. Estimating the volume and age of water stored in global lakes using a geo-statistical approach //Nature Communications. 2016. V. 7. Article 13603.doi: 10.1038/ncomms13603.
  12. Olson D.M., Dinerstein E., Wikramanayake E.D., Burgess N.D., Powell G.V., Underwood E.C., D’amico J.A., Itoua I., Strand H.E., Morrison J.C., Loucks C.J., Allnutt T.F., Ricketts T.H., Kura Y., Lamoreux J.F., Wettengel W.W., Hedao P., Kassem K.R. Terrestrial Ecoregions of the World: A New Map of Life on Earth: A new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity //BioScience. 2001. V. 51. Issue 11.P. 933–938. doi: 10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2.
  13. Pokrovsky O.S., Shirokova L.S., Kirpotin S.N., Audry S., Viers J., Dupre B. Effect of permafrost thawing on the organic carbon and metal speciation in thermokarst lakes of Western Siberia // Biogeosciences. 2011. V. 8.P. 565–583. doi: 10.5194/bg-8-565-2011.
  14. Polishchuk Y.M., Bogdanov A.N., Muratov I.N., Polishchuk V.Y., Lim A., Manasypov R.M., Shirokova L.S. and Pokrovsky O.S. Minor contribution of small thaw ponds to the pools of carbon and methane in the inland waters of the permafrost – affected part of the Western Siberian lowland //Environmental Research Letters. 2018. V. 13.P. 1–16. doi: 10.1088/1748-9326/aab046.
  15. Serikova S., Pokrovsky O.S., Laudon H., Krickov I.V., Lim A.G., Manasypov R.M., Karlsson J. High carbon emissions from thermokarst lakes of Western Siberia //Nature Communications. 2019. V. 10. Article 1552. doi: 10.1038/s41467-019-09592-1.
  16. Veremeeva A., Nitze I., Gunter F., Rivkina E. Geomorphological and climatic drivers of thermokarst lake area increase trend (1999–2018) in the Kolyma Lowland Yedoma region, north-eastern Siberia //Remote Sensing. 2021. V. 13. 178. doi: 10.3390/rs13020178.
  17. Webb E.E., Liljedahl A.K. Diminishing lake area across the northern permafrost zone //Nature Geoscience. 2023. V. 16. P. 202–209. doi: 10.1038/s41561-023-01128-z.
  18. Zabelina S., Shirokova L., Klimov S., Chupakov A., Lim A., Polishchuk Y., Polishchuk V., Bogdanov A., Muratov I., Guerin F., Karlsson J., and Pokrovsky O. Carbon Emission from Thermokarst Lakes in NE European Tundra //Limnology and Oceanography. 2021. V. 66. P. S216–S230. doi: 10.1002/lno.11560.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. A cartographic diagram of the location of the studied territory with the marked boundaries of the tundra and taiga zones and the location of the test sites.

Baixar (334KB)
3. Fig. 2. Fragments of satellite images of Canopus-C (left, August 30, 2018, August 15, 2015) and Sentinel-2 (right, August 18, 20, 2022) of the tundra (a, b) and taiga (c, d) zones of the studied territory.

Baixar (2MB)
4. Fig. 3. Graph of the distribution of the number of thermokarst lakes by their size ranges in the territories of the studied tundra and taiga zones based on Canopus-V and Sentinel-2 images. Bold numbers 1, 2 and 3 indicate the ranges of lake sizes.

Baixar (221KB)
5. Fig. 4. The dependence of the logarithm of the number of thermokarst lakes on the logarithm of their size.

Baixar (181KB)
6. Fig. 5. Graph of the distribution of the total areas of thermokarst lakes by their size ranges in the studied territories based on Canopus-V and Sentinel-2 images. Bold numbers 1, 2 and 3 indicate the ranges of lake sizes.

Baixar (232KB)
7. Fig. 6. The dependence of the logarithm of the total area of thermokarst lakes on the logarithm of their size.

Baixar (181KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».