Creation of Two-Dimensional High Temperature Superconductivity Under the Influence of an Electric Field
- Authors: Bodneva V.L.1, Kozhushner M.A.1, Lidskii B.V.1, Posvyanskii V.S.1, Trakhtenberg L.I.1,2
- 
							Affiliations: 
							- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
- Moscow State University
 
- Issue: Vol 42, No 7 (2023)
- Pages: 3-9
- Section: XXXIV СИМПОЗИУМ “СОВРЕМЕННАЯ ХИМИЧЕСКАЯ ФИЗИКА” (СЕНТЯБРЬ 2022 г., ТУАПСЕ)
- URL: https://journal-vniispk.ru/0207-401X/article/view/139923
- DOI: https://doi.org/10.31857/S0207401X2307004X
- EDN: https://elibrary.ru/YAYSGJ
- ID: 139923
Cite item
Full Text
Abstract
This study discusses the conditions for the occurrence of two-dimensional superconductivity under the action of an electric field on an La2 – xSrxCuO4 plate at a temperature lower than the maximum temperature of the superconducting transition, but when the concentration of charge carriers falls outside the superconductivity range. The study is carried out for a lanthanum-strontium cuprate plate at various hole concentrations, as well as temperature, and potential differences. A quasi-two-dimensional superconducting layer arises near the surface of the plate. The thickness of the superconducting layer is several angstroms and independent of the field strength in the range investigated. The thickness depends only on the concentration of holes and temperature. In addition, the distance of the superconducting layer from the edge of the plate is found to be a function of all three factors. The conditions used for conducting the experiment are also formulated.
About the authors
V. L. Bodneva
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
														Email: litrakh@gmail.com
				                					                																			                												                								Moscow, Russia						
M. A. Kozhushner
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
														Email: litrakh@gmail.com
				                					                																			                												                								Moscow, Russia						
B. V. Lidskii
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
														Email: litrakh@gmail.com
				                					                																			                												                								Moscow, Russia						
V. S. Posvyanskii
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
														Email: litrakh@gmail.com
				                					                																			                												                								Moscow, Russia						
L. I. Trakhtenberg
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences; Moscow State University
							Author for correspondence.
							Email: litrakh@gmail.com
				                					                																			                												                								Moscow, Russia; Moscow, Russia						
References
- Bednorz J.G., Müller K. A. // Z. Phys. B. 1986. V. 4. P. 189.
- Keimer B., Kivelson S.A., Norman M.R. et al. // Nature. 2015. V. 518. P. 179.
- Yoshida T., Zhou X.J., Lu D.H. et al. // J. Phys.: Cond. Matt. 2007. V. 19. P. 125209.
- Rice T.M. // Phys. Rev. A. 1965. V. 140. P. 1889.
- Reyren N., Thiel S., Caviglia A.D. et al. // Science. 2007. V. 317. P. 1196.
- Brun C., Cren T., Cherkez V. et al. // Nature Phys. 2014. V. 10. P. 444.
- Uchihashi T. // Supercond. Sci. Tekhnol. 2016. V. 30. P. 1.
- Uchihashi T., Yoshizava S., Minamitami E. et al. // Molec. Syst. Des. Eng. 2019. V. 4. P. 511.
- Садовский М.В. // УФН. 2016. Т. 186. С. 1035.
- Pavlov D.P., Zagidullin R.R., Mikhailov V.M. et al. // Phys. Rev. Lett. 2019. V. 122. P. 237001.
- Glover R.E., Sherill M.D. // Phys. Rev. Lett. 1960. V. 5. P. 248.
- Shkuratov S.I. // J. Vac. Sci. Technol. 1993. V. 11. P. 353.
- Sakai S. // Phys. Rev. B. 1993. V. 47. P. 9042.
- Moravets K. // Ibid. 2002. V. 66. P. 172508.
- Konsin P., Sorkin B. // Ibid. 1998. V. 58. P. 5795.
- Ahn C.H., Triscone J.-M., Mannhart J. // Nature. 2003. V. 424. P. 1015.
- Галашев А.Е., Рахманова О.Р., Катин К.П. и др. // Хим. физика. 2020. Т. 39. № 11. С. 80.
- Симбирцева Г.В., Пивень Н.П., Бабенко С.Д. // Хим. физика. 2020. Т. 39. № 12. С. 60.
- Val’kov V.V., Dzebisashvili D.M., Barabanov A.F. // Phys. Lett. A. 2015. V. 379. № 5. P. 421.
- Вальков В.В., Дзебисашвили Д.М., Барабанов А.Ф. // Письма ЖЭТФ. 2016. Т. 104. С. 745.
- Ландау Л.Д., Лифшиц Е.М. Статистическая физика. М.: Наука, 1995.
- Ландау Л.Д., Лифшиц Е.М. Электродинамика сплошных сред. М.: Наука, 1982.
- Gelfand I.M., Fomin S.V. Calculus of variations. N.J.: Prentice-Hall, Inc., Englewood Cliffs, 1963.
- Годунов C.К., Рябенький В.С. Разностные схемы. М.: Наука, 1977.
- Takagi H., Cava R.J., Marezio M. et al. // Phys. Rev. Lett. 1992. V. 68. P. 3777.
- Nagano T., Tomioka T.Y., Nakayama Y. et al. // Phys. Rev. B. 1993. V. 48. P. 9689.
- Yamada K., Lee C.H., Kurahashi K. et al. // Ibid. 1998. V. 57. P. 6165.
- Takagi H., Ido T., Ishibashi S. et al. // Ibid. 1989. V. 40. P. 2254.
- Torrance J.B., Bezinge A., Nazzal A.I., Huang T.C. et al. // Ibid. P. 8872.
- Liang R., Bonn D.A., Hardy W.N. // Ibid. 2006. V. 73. P. 180505.
- Кожушнер М.А., Посвянский В.С., Лидский Б.В. и др. // ФТТ. 2020. Т. 62. № 8. С. 1154.
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
				
 
  
  
  Email this article
			Email this article 




