Regularities of the formation of cool-flame oxidation products of rich propane-oxygen mixtures in a two-section reactor

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The effect of the ratio of the reagents on a stabilized cool flame of rich propane-oxygen mixtures is investigated. It was found that with an increase in the initial concentration of propane in the mixture, its consumption, as well as the concentration of propylene, has a maximum a ratio of C3H8 : O2 = 1 : 1. In this case, the selectivity of propylene formation reaches a maximum a ratio of C3H8 : O2 = 4 : 1. It is shown that an increase in the initial propane concentration in the mixture increases the yield of methane, but reduces the yield of propylene, ethylene, hydrogen, CO, CO2, methanol, formaldehyde and acetaldehyde. At a ratio of C3H8 : O2 = 6 : 1, ethane was also found in the reaction products. The possibility of ethanol formation in the reactions of ethoxyl and hydroxyethyl radicals with acetaldehyde has been analyzed using the CBS-QB3 quantum-chemical method.

Негізгі сөздер

Авторлар туралы

N. Poghosyan

Nalbandyan Institute of Chemical Physics, National Academy of Sciences of Republic of Armenia

Email: strekova@bk.ru
Армения, Yerevan

M. Poghosyan

Nalbandyan Institute of Chemical Physics, National Academy of Sciences of Republic of Armenia

Email: strekova@bk.ru
Армения, Yerevan

A. Davtyan

Nalbandyan Institute of Chemical Physics, National Academy of Sciences of Republic of Armenia

Email: strekova@bk.ru
Армения, Yerevan

S. Arsentev

Nalbandyan Institute of Chemical Physics, National Academy of Sciences of Republic of Armenia

Email: strekova@bk.ru
Армения, Yerevan

L. Strekova

Semenov Federal Research Center for Chemical Physics of Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: strekova@bk.ru
Ресей, Moscow

V. Arutyunov

Semenov Federal Research Center for Chemical Physics of Russian Academy of Sciences

Email: strekova@bk.ru
Ресей, Moscow

Әдебиет тізімі

  1. Poghosyan N.M., Poghosyan M.D., Shapovalova O.V. et al. Technologiacal Combustion / Ed. Aldoshin S.M., Alimov M.I., Arutyunov V.S. et al. Moscow: Russian Academy of Sciences, 2018. P. 114. https://doi.org/10.31857/S9785907036383000005
  2. Poghosyan N.M., Poghosyan M.D., Strekova L.N. et al. // Russ. J. Phys. Chem. B. 2015. V. 9(2). P. 218. https://doi.org/10.1134/S1990793115020104
  3. Poghosyan N.M., Poghosyan M.D., Arsentiev S.D. // Russ. J. Phys. Chem. B. 2015. V. 9(2). P. 231. https://doi.org/10.1134/S199079311502027X
  4. Grigoryan R.R., Arsentev S.D. // Pet. Chem. 2020. V. 60. № 2. P. 187. https://doi.org/10.1134/S096554412002005X
  5. Pogosyan N.M., Pogosyan M.Dj., Arsentiev S.D. et al. // Petr. Chem. 2020. V. 60. № 3. P. 316. https://doi.org/10.1134/S0965544120030172
  6. Arsentev S.D., Tavadyan L.A., Bryukov M.G. et al. // Russ. J. Phys. Chem. B. 2022. V. 16(6). P. 1019. https://doi.org/10.1134/S1990793122060021
  7. Palankoeva A.S., Belyaev A.A., Arutyunov V.S. // Russ. J. Phys. Chem. B. 2022. V. 16(3). P. 399. https://doi.org/10.1134/S1990793122030204
  8. Bryukov M.G., Belyaev A.A., Zakharov A.A. et al. // Kinetics and Catalysis. 2022. V. 63(6). P. 653. https://doi.org/10.1134/S0023158422060039
  9. Shtern V.Ya. Oxidation of Hydrocarbons. Oxford, London, New York: Pergamon Press, 1964.
  10. Prettre M. // Bul. Soc. Chim. Fr. 1932. Ser. 4. V. 41. № 9. P. 1132.
  11. Knox J.H., Norrish R.G.W. // Trans. Far. Soc. 1954. V. 50. № 9. P. 928.
  12. Hughes R., Simmons R.F. // Combust and Flame. 1970. V. 14. № 1. P. 103.
  13. Ouellet L., Leger E., Ouellet C. // J. Chem. Phys. 1950. V. 18. P. 383. https://doi.org/10.1063/1.1747636
  14. Unusual “cool flames” discovered aboard International Space Station. https://new.nsf.gov/news/unusual-cool-flames-discovered-aboard
  15. Lin K.C., Chiu Ch.-T. // Fuel. 2017. V. 203. P. 102. http://dx.doi.org/10.1016/j.fuel.2017.04.064
  16. Liu J., Yu R., Ma B. // ACS Omega 2020. V. 5. P. 16448.
  17. Titova N.S., Kuleshov P.S., Starik A.M. // Combust. Explosion, Shock Waves. 2011. V. 47. № 3. P. 249. https://doi.org/10.1134/S0010508211030014
  18. Poghosyan N.M., Poghosyan M.D., Arsentev S.D. et al. // Russ. J. Phys. Chem. B. 2023. V. 17. № 5. P. 1130. https://doi.org/10.31857/S0207401X2309008X
  19. Mantashyan A.A. // Russ. J. Phys. Chem. B. 2021. V. 15. P. 233. https://doi.org/10.1134/S1990793121020214
  20. Troshin K.Ya., Rubtsov N.M., Tsvetkov G.I. // Russ. J. Phys. Chem. B. 2022. V. 16(1). P. 39. https://doi.org/10.1134/S199079312201016X
  21. Mantashyan A.A., Gukasyan P.S. // Dokl. Acad. Nauk USSR. 1977. V. 234(2). P. 379.
  22. Mantashyan A.A., Gukasyan P.S., Sayadyan R.H. // React. Kinet. Cat. Lett. 1979. V. 11. P. 225. https://doi.org/10.1007/BF02067830
  23. Pogosyan M.J., Aliev R.K., Mantashyn A.A. // React. Kinet. Cat. Lett. 1985. V. 27. № 2. P. 437. https://doi.org/10.1007/BF02070490
  24. Simonyan T.R., Mantashyan A.A. // React. Kinet. Cat. Lett. 1981. V. 17. № 3–4. P. 319.
  25. Simonyan T.R., Mantashyan A.A. // Arm. Khim. Zhurn. 1979. V. 32(10). P. 757.
  26. Carlier M., Sochet L.-R. // Combust and Flame. 1978. V. 33. № 1–4. P. 1. https://doi.org/10.1016/0010-2180(78)90039-1
  27. Pauwels J.F., Carlier M., Devolder P., Sochet L.-R. // Ibid. 1990. V. 82. № 2. P. 163. https://doi.org/10.1016/0010-2180(90)90095-9
  28. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman, J.R., Scalmani G., Barone V., Petersson G.A., Nakatsuji H., Li X., Caricato M., Marenich A.V., Bloino J., Janesko B.G., Gomperts R., Mennucci B., Hratchian H.P., Ortiz J.V., Izmaylov A.F., Sonnenberg J.L., Williams-Young D., Ding F., Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T., Ranasinghe D., Zakrzewski V.G., Gao J., Rega N., Zheng G., Liang W., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Throssell K., Montgomery J.A. Jr., Peralta J.E., Ogliaro F., Bearpark M.J., Heyd J.J., Brothers E.N., Kudin K.N., Staroverov V.N., Keith T.A., Kobayashi R., Normand J., Raghavachari K., Rendell A.P., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Millam J.M., Klene M., Adamo C., Cammi R., Ochterski J.W., Martin R.L., Morokuma K., Farkas O., Foresman J.B., Fox D.J. Gaussian 16. Rev. C.01, Wallingford CT: Gaussian, Inc., 2016.
  29. Dennington R., Keith T.A., Millam J.M. GaussView. Ver. 6.1, Shawnee Mission, KS: Semichem Inc., 2019.
  30. Grigoryan R.R., Aresnt’ev S.D., Mantashyan A.A. // Combustion, Explosion, and Shock Waves. 1981. V. 17(3). P. 272. https://doi.org/10.1007/BF00751298
  31. Poladyan E.A., Grigoryan G.L., Khachatryan L.A., Mantashyan A.A. // Kinet. Katal. 1976. V. 17(2). P. 304.
  32. Grigoryan R.R., Arsentev S.D., Mantashyan A.A. // Chemistry and Chemical Technology. 1983. V. 2. P. 15.
  33. Mantashyan A.A. // Chem. Phys. Reports. 1996. V. 15(4). P. 545.
  34. Mantashyan A.A. Khachatryan L.A. Niazyan O.M., Arsentyev S.D. // Combust. and Flame. 1981. V. 43. P. 221. https://doi.org/10.1016/0010-2180(81)90022-5
  35. Hippler H., Striebel F., Viskolcz B. // Phys. Chem. Chem. Phys. 2001. V. 3. № 12. P. 2450; https://doi.org/10.1039/B101376I
  36. Xu Z.F., Xu K., Lin M.C. // ChemPhysChem. 2009. V. 10. P. 972. https://doi.org/10.1002/cphc.200800719
  37. Zhang Y., Zhang S.W., Li Q.S. // Chem. Phys. 2004. V. 296. P. 79. https://doi.org/10.1016/J.CHEMPHYS.2003.09.030
  38. Mantashyan A.A., Arsentev S.D. // Kinetika i kataliz. 1981. V. 22(4). P. 898.
  39. Mantashyan A.A., Arsentev S.D. // Kinetika i kataliz. 1981. V. 22(6). P. 1389.
  40. Morris E.D., Stedman D.H., Niki H. // J. Amer. Chem. Soc. 1971. V. 93. № 15. P. 3570.
  41. Meagher J.F., Heicklen J. // J. Phys. Chem. 1976. V. 80. № 15. P. 1645.
  42. Davtyan A.H., Manukyan Z.H., Arsentev S.D. et al. // Russ. J. Phys. Chem. B. 2023. V. 17(2). P. 336. https://doi.org/10.1134/S1990793123020239
  43. Williams A.E., Hammer N.I., Tschumper G.S. // J. Chem. Phys. 2021. V. 155. № 114306. https://doi.org/10.1063/5.0062809

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».