Heterogeneous reaction of dimethyl sulfide with a chlorine atom

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

By the method of resonant fluorescence (RF) of chlorine atoms, the reaction rate constant of a chlorine atom with dimethyl sulfide (DMS) was measured in the temperature range 308–366 K. It is shown that the reaction rate constant decreases during experiments at a higher temperature. At a temperature of 308 K, the rate constant of this reaction was measured at different ratios of the reaction time and the diffusion time of chlorine atoms to the reactor wall. The data of these experiments showed that with an increase in the diffusion time of the active centers to the surface of the reactor, compared with the contact time of the reagents, a decrease in the measured reaction rate constant is observed. This allowed us to assert that the reaction is heterogeneous and the interaction of the chlorine atom with the DMC occurs on the surface of the reactor.

Full Text

Restricted Access

About the authors

I. K. Larin

Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences

Email: eltrofimova@yandex.ru
Russian Federation, Moscow

G. B. Pronchev

Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences

Email: eltrofimova@yandex.ru
Russian Federation, Moscow

E. M. Trofimova

Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences

Author for correspondence.
Email: eltrofimova@yandex.ru
Russian Federation, Moscow

References

  1. Andreae M.O. // Mar. Chem. 1990. V. 30. P. 1.
  2. Kettle A.J., Andreae M.O. // J. Geophys. Res. 2000. V. 105. P. 26793.
  3. Bates T.S., Lamb B.K., Guenther A. et al. // J. Atmos. Chem. 1992. V. 14. P. 315.
  4. Larin I.K. // Russ. J. Phys. Chem. 2020. V. 14. № 2. P. 336; https://doi.org/10.1134/S1990793120020086
  5. Larin I.K., Aloyan A.E., Ermakov A.N. // J. Phys. Chem. 2021. V. 15. № 2. P. 357; https://doi.org/10.1134/S1990793121020081
  6. Golyak I.S., Anfimov D.R., Vintaykin I.B. et al. // J. Phys. Chem. 2023. V. 17. № 2. P. 320; https://doi.org/10.1134/S1990793123020264
  7. Larin I.K. // Russ. J. Phys. Chem. B 2020. V. 14. № 2. P. 344; https://doi.org/10.1134/S1990793120020256
  8. Aloyan A.E., Ermakov A.N., Arutyunyan V.O. // Russ. J. Phys. Chem. B 2019. V. 13. № 1. P. 214; https://doi.org/10.1134/S1990793119010032
  9. Chen Q., Sherwen T., Evans M., Alexander B. // Atmos. Chem. Phys. 2018. V. 18. P. 13617; https://doi.org/10.5194/acp-18-13617-2018
  10. Williams M.B., Campuzano-Jost P., Bauer D., Hynes A. // J. Phys. Chem. Lett. 2001. V. 344. P. 61.
  11. Nakano Y., Enami S., Nakamishi S. et al. // J. Phys. Chem. 2003. V. 107. P. 6381.
  12. Larin I.K., Belyakova T.I., Messineva N.A., Trofimova E.M. // Kinet. Katal. 2021. V. 62. P. 187;https://doi.org/10.31857/S0453881121020064
  13. Arsene C., Barnes I., Becker K.H., Benter T. // Int. J. Chem. Kinet. 2005. V. 37. P. 66.
  14. Enami S., Nakano Y., Hashimoto S. et al. // J. Phys. Chem. 2004. V. 108. P. 7785.
  15. Larin I.K., Spasskii A.I., Trofimova E.M., Turkin L.E. // Kinet. Katal. 2000. V. 41. № 4. P. 437; https://doi.org/10.1007/BF02756058
  16. Kikoin I.K. Tablitsy fizicheskikh velichin (Tables of physical values). Moscow: Atomizdat, 1976.
  17. Atkinson R., Baulsh D.V., Cox R.F. et al. // J. Phys. Chem. Ref. Data. 1992. V. 21. P. 1125.
  18. Larin I.K., Spasskii A.I., Turkin L.E., Trofimova E.M. // Kinet. Katal. 2003. V. 44. № 2. P. 218.
  19. Larin I.K., Spasskii A.I., Trofimova E.M., Turkin L.E. // Kinet. Catal. 2010. V. 51. № 3. P. 369.
  20. Larin I.K., Spasskii A.I., Trofimova E.M. // Izv. Ross. Akad. Nauk, Energ. 2012. V. 3. P. 44.
  21. Larin I.K., Spasskii A.I., Trofimova E.M. // J. Phys. Chem. 2019. V. 13. № 2. P. 256; https://doi.org/10.1134/S1990793119020180
  22. Behnke W., Zetsch C. // J. Aerosol Sci. 1989. V. 20. № 8. P. 116.
  23. Buben S.N., Larin I.K., Messineva N.A., Trofimova E.M. // Chem. Phys. Rep. 1996. V. 15. № 1.
  24. Larin I.K., Belyakova T.I., Messineva N.A., Trofimova E.M. // J. Phys. Chem. 2023. V. 17. № 2. P. 510; https://doi.org/10.1134/S199079312302029X
  25. Gershenzon Yu.M., Rozenshtein V.B., Spasskii A., Kogan A.M. // Dokl. Akad. Nauk SSSR. 1972. V. 205. P. 624.
  26. Orkin V.L., Khamaganov V.G., Larin I.K. // Intern. J. Chem. Kinet. 1993. V. 25. P. 67.
  27. Hwang C.J., Jiang R.C., Su T.M. // J. Chem. Phys. 1986. V. 84. P. 5095.
  28. Cotter E.S.N., Booth N.J., Canosa-Mas C.E. et al. // Phys. Chem. Chem. Phys. 2001. V. 3. P. 402.
  29. Hwang C.J., Su T.M. // J. Chem. Phys. 1987. V. 91. P. 2351.
  30. Fuller E.M., Ensue K., Giddins J.Q. // J. Phys. Chem. 1969. V. 73. P. 3679.
  31. Stickel R.E., Nicovich J.M., Wang S., Zhao Z., Wine P.H. // J. Phys. Chem. 1992. V. 96. P. 9875.
  32. Díaz-de-Mera Y., Aranda A., Rodríguez D. et al. // J. Phys. Chem. A. 2002. V. 106. P. 8627.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Reactor diagram.

Download (121KB)
3. Fig. 2. Graph of the dependence of ln(J₀/J) on the concentration of DMS. Reaction conditions: temperature – 308 K, reactor pressure – 0.95 Torr, [Cl] = 3.2 ‧ 10¹¹ molecules/cm³ and [DMS] = 5.1 ‧ 10¹¹ molecules/cm³. Helium served as a diluent.

Download (64KB)
4. Fig. 3. Graph of the dependence of ln(J0/J) on the contact time of the reactants. Reaction conditions: temperature – 308 K, reactor pressure – 0.8 Torr; [Cl] = 4.8 ‧ 10¹¹ molecules/cm³ and [DMS] = 5.1 ‧ 10⁻¹¹ molecules/cm³. Helium served as a diluent.

Download (55KB)
5. Fig. 4. Dependence of the reaction rate of chlorine atoms with dimethyl sulfide on temperature in the temperature range of 308–366 K. Helium served as a diluent.

Download (56KB)
6. Fig. 5. Graph of the theoretical dependence of k/kobs on λ² for the case of a purely homogeneous reaction (lower curve), a purely heterogeneous reaction (upper curve) and for the cases when the ratio khet /(khet + khom) = 0.1, 0.2 and 0.5. Black circles are experimental data.

Download (71KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».