Heterocyclic molecules fragmentation due to single electron capture by doubly charged ions

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The of adenine (Ade, C5H5N5) and cyclodiglycine (DKP, C4H6N2O2) ions fragmentation formed in the singly electron capture during the interaction of molecules in the gas phase with C2+ and O2+ ions with an energy of 12 keV have been studied. The experimentally observed dependence of the relative fragmentation cross section of molecular ions on the type of projectile is qualitatively explained within the framework of the quasi-molecular model. Using the multi-configuration method of self-consistent field in complete active space (CASSCF), calculations of the fragmentation reaction paths of Ade+ and DKP+ ions were performed. The calculated appearance energies are in good agreement with the available experimental data.

About the authors

A. A. Basalaev

Ioffe Physical-Technical Institute of the Russian Academy of Sciences

Author for correspondence.
Email: a.basalaev@mail.ioffe.ru
Russian Federation, Saint Petersburg

V. V. Kuz’michev

Ioffe Physical-Technical Institute of the Russian Academy of Sciences

Email: a.basalaev@mail.ioffe.ru
Russian Federation, Saint Petersburg

M. N. Panov

Ioffe Physical-Technical Institute of the Russian Academy of Sciences

Email: a.basalaev@mail.ioffe.ru
Russian Federation, Saint Petersburg

K. V. Simon

Ioffe Physical-Technical Institute of the Russian Academy of Sciences

Email: a.basalaev@mail.ioffe.ru
Russian Federation, Saint Petersburg

O. V. Smirnov

Ioffe Physical-Technical Institute of the Russian Academy of Sciences

Email: a.basalaev@mail.ioffe.ru
Russian Federation, Saint Petersburg

References

  1. H.-W. Jochims, M. Schwell, H. Baumgärtel et al., Chem. Phys., 314, 263 (2005). https://doi.org/10.1016/j.chemphys.2005.03.008
  2. S. Pilling, A. F. Lago, L. H. Coutinho et al., Rapid Commun. Mass Spectrom., 21, 3646 (2007). https://doi.org/10.1002/rcm.3259
  3. D. Barreiro-Lage, P. Bolognesi, J. Chiarinelli et al., J. Phys. Chem. Lett., 12, 7379 (2021). https://doi.org/10.1021/acs.jpclett.1c01788
  4. J.D. Chiarinelli, D. Barreiro-Lage, P. Bolognesi et al., Phys. Chem. Chem. Phys., 24, 5855 (2022). https://doi.org/10.1039/D1CP05811H
  5. D. Barreiro-Lage, J. Chiarinelli, P. Bolognesi et al., Phys. Chem. Chem. Phys., 25, 15635 (2023). https://doi.org/10.1039/D3CP00608E
  6. S. Feil, K. Gluch, S. Matt-Leubner et al., J. Phys. B: At. Mol. Opt. Phys., 37, 3013 (2004). https://doi.org/10.1088/0953-4075/37/15/001
  7. M.M. Dawley, K. Tanzer, W.A. Cantrell et al., Phys. Chem. Chem. Phys., 16, 25039 (2014). https://doi.org/10.1039/C4CP03452J
  8. P.J. M. van der Burgt, S. Finnegan, S. Eden. Eur. Phys. J. D., 69, 173 (2015). https://doi.org/10.1140/epjd/e2015-60200-y
  9. B. Li, X. Ma, X. L. Zhu et al., J. Phys. B: At. Mol. Opt. Phys., 42, 075204 (2009). https://doi.org/10.1088/0953-4075/42/7/075204
  10. J. de Vries, R. Hoekstra, R. Morgenstern et al., J. Phys. B: At. Mol. Opt., Phys., 35, 4373 (2002). https://doi.org/10.1088/0953-4075/35/21/304
  11. J. Tabet, S. Eden, S. Feil et al., Int. J. Mass Spectr., 292, 53 (2010). https://doi.org/10.1016/j.ijms.2010.03.002
  12. V.V. Afrosimov, A.A. Basalaev, O.S. Vasyutinskii et al., Eur. Phys. J. D, 69, 3 (2015). https://doi.org/10.1140/epjd/e2014-50435-5
  13. A.A. Basalaev, V.V. Kuz’michev, M.N. Panov et al., Techn. Phys. Lett., 48 (9), 11 (2022). https://doi.org/10.21883/TPL.2022.09.55073.19238
  14. A.A. Basalaev, V.V. Kuz’michev, M.N. Panov et al., Radiat. Phys. Chem., 193, 109984 (2022). https://doi.org/10.1016/j.radphyschem.2022.109984
  15. A.A. Basalaev, V.V. Kuz’michev, M.N. Panov et al., Techn. Phys., 67 (7), 812 (2022). https://doi.org/10.21883/TP.2022.07.54477.309-21
  16. G.M.J. Barca, C. Bertoni, L. Carrington et al., J. Chem. Phys. 152, 154102 (2020). https://doi.org/10.1063/5.0005188
  17. Yu.A. Dyakov, S.O. Adamson, P.K. Wang et al., Rus. J. Phys. Chem. B, 15, 782 (2021). https://doi.org/10.1134/S1990793121050134
  18. Yu.A. Dyakov, S.O. Adamson, P.K. Wang et al., Rus. J. Phys. Chem. B, 16, 543 (2022). https://doi.org/10.1134/S1990793122030149
  19. G.M. Khrapkovskii, I.V. Aristov, D.L. Egorov et al., Rus. J. Phys. Chem. B,. 16, 862 (2022). https://doi.org/10.1134/S1990793122040066
  20. A.A. Basalaev, V.V. Kuz’michev, M.N. Panov et al., Rus. J. Phys. Chem. B, 17, 1025 (2023) https://doi.org/10.1134/S1990793123050172
  21. N.S. Hush, A.S. Cheung. Chem. Phys. Lett., 34, 11 (1975).
  22. C.T. Hwang, C.L. Stumpf, Y.-Q. Yu et al., Int. J. Mass Spectrom., 182/183. 253 (1999).
  23. N. Russo, M. Toscano, A. Grand. J. Comput. Chem., 21, 1243 (2000).
  24. R. Improta, G. Scalmani, V. Barone, Int. J. Mass Spectrom., 201, 321 (2000).
  25. R.K. Janev, L.P. Presnyakov, Phys. Rep., 70, 1 (1981) https://doi.org/10.1016/0370-1573(81)90161-7
  26. J. Lin, C.Yu, S. Peng, I. Akiyama et al., J. Am. Chem. Soc.. 102, 4627 (1980).
  27. A.B. Trofimov, J. Schirmer, V.B. Kobychev et al., J. Phys. B: At. Mol. Opt. Phys. 39, 305 (2006). https://doi.org/10.1088/0953-4075/39/2/007
  28. A.P. W. Arachchilage, F. Wang, V. Feyer et al., J. Chem. Phys., 133, 174319 (2010). https://doi.org/10.1063/1.3499740
  29. J. Franz, F. A. Gianturco, Eur. Phys. J. D, 68, 279 (2014). https://doi.org/10.1140/epjd/e2014-50072-0
  30. A. Kramida, Yu. Ralchenko, J. Reader et al., NIST Atomic Spectra Database (ver. 5.9). (2021). https://doi.org/10.18434/T4W30F

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».