Study of thermal denaturation of the plasminogen molecule under induced oxidation
- Authors: Wasserman L.A.1, Gavrilina E.S.1, Yurina L.V.1, Vasilyeva A.D.1, Rosenfeld M.A.1
- 
							Affiliations: 
							- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences
 
- Issue: Vol 43, No 11 (2024)
- Pages: 39-46
- Section: Chemical physics of biological processes
- URL: https://journal-vniispk.ru/0207-401X/article/view/281871
- DOI: https://doi.org/10.31857/S0207401X24110058
- ID: 281871
Cite item
Abstract
The article is devoted to the study of thermal denaturation of the plasminogen molecule during induced oxidation by hypochlorite in a concentration range (30, 62.5, 125 and 250 µM). By differential scanning calorimetry, it was determined that in the presence of an oxidizing agent, the enthalpy of denaturation of the plasminogen molecule decreases. This is most noticeable for the peak showing the melting of the K4-K5 domains. These results are consistent with previously obtained data on the oxidative modification of amino acid residues of plasminogen treated with different concentrations of hypochlorite using the HPLC-MS/MS method. Taken together, these data and the results of previous studies indicate that the structure of Glu-plasminogen is adapted to moderate HOCl-induced oxidation.
Full Text
 
												
	                        About the authors
L. A. Wasserman
Emanuel Institute of Biochemical Physics, Russian Academy of Sciences
														Email: lyu.yurina@gmail.com
				                					                																			                												                	Russian Federation, 							Moscow						
E. S. Gavrilina
Emanuel Institute of Biochemical Physics, Russian Academy of Sciences
														Email: lyu.yurina@gmail.com
				                					                																			                												                	Russian Federation, 							Moscow						
L. V. Yurina
Emanuel Institute of Biochemical Physics, Russian Academy of Sciences
							Author for correspondence.
							Email: lyu.yurina@gmail.com
				                					                																			                												                	Russian Federation, 							Moscow						
A. D. Vasilyeva
Emanuel Institute of Biochemical Physics, Russian Academy of Sciences
														Email: lyu.yurina@gmail.com
				                					                																			                												                	Russian Federation, 							Moscow						
M. A. Rosenfeld
Emanuel Institute of Biochemical Physics, Russian Academy of Sciences
														Email: lyu.yurina@gmail.com
				                					                																			                												                	Russian Federation, 							Moscow						
References
- L. Miles, Trends in Cardiovascular Medicine. 13(1), 21–30 (2003). doi: 10.1016/S1050-1738(02)00190-1
- L.R. De Souza, P.M. Melo, T. Paschoalin, et al., Biochemical and Biophysical Research Communications. 433(3), 333–337 (2013). doi: 10.1016/j.bbrc.2013.03.001
- S.M. McKenna, K.J.A. Davies, Biochemical Journal. 254(3), 685–692(1988). doi: 10.1042/bj2540685
- A. Ulfig, L.I. Leichert, Cell. Mol. Life Sci. 78(2), 385–414 (2021). doi: 10.1007/s00018-020-03591-y
- A. Vasilyeva, L. Yurina, V. Ivanov, et al., International Journal of Biological Macromolecules. 206, 64–73 (2022). doi: 10.1016/j.ijbiomac.2022.02.128
- D.G. Deutsch, E.T. Mertz, Science. 170(3962), 1095–1096 (1970). doi: 10.1126/science.170.3962.1095
- U.K. Laemmli, Nature. 227(5259), 680–685 (1970). doi: 10.1038/227680a0
- N.J. White, Y. Wang, X. Fu, et al., Free Radical Biology and Medicine. 96, 181–189 (2016). doi: 10.1016/j.freeradbiomed.2016.04.023
- A.D. Vasilieva, L.V. Yurina, D.Y. Azarova, et al., Russ. J. Phys. Chem. B. 16, 118–122 (2022). doi: 10.1134/S1990793122010316
- L.V. Yurina, A.D. Vasilieva, E.G. Evtushenko, et al., Russ. J. Phys. Chem. B. 18(2), 521-526 (2024). doi: 10.1134/S1990793124020349
- W.H. Lau, N.J. White, T.W. Yeo, et al., Sci Rep. 11(1), 15691 (2021). doi: 10.1038/s41598-021-94401-3
- K.V. Shaitan, Russ. J. Phys. Chem. B. 17(3), 550-571 (2023). doi: 10.1134/S1990793123030259
- A.D. Vasilyeva, L.V. Yurina, A.N. Shchegolikhin, et al., Dokl Biochem Biophys. 488(1), 332-337 (2019). doi: 10.1134/S1607672919050144
- L.N. Shishkina, M.V. Kozlov, T.V. Konstantinova, et al., Russ. J. Phys. Chem. B. 17(1), 141–147 (2023). doi: 10.1134/S1990793123010104
- F.J. Castellino, V.A. Ploplis, J.R. Powell, D.K. Strickland, J Biol Chem. 256(10), 4778–4782 (1981).
- V.V. Novokhatny, S.A. Kudinov, P.L. Privalov, Journal of Molecular Biology. 179(2), 215–232 (1984). doi: 10.1016/0022-2836(84)90466-2
- E. Freire, R.L. Biltonen, Biopolymers. 17(2), 481–496 (1978). doi: 10.1002/bip.1978.360170213
- M.A. Rosenfeld, L.V. Yurina, A.D. Vasilyeva, Biology Bulletin Reviews. 11(7), 647–664 (2021). doi: 10.1134/S2079086421070070
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
				
 
  
  
  Email this article
			Email this article 
 Open Access
		                                Open Access Access granted
						Access granted


