Photogeneration of charge carriers in organic solar cells. The role of nonequilibrium states for electrons and holes

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The aim of this study is to consider a photogeneration of charge carriers in nano-structured blends of the donor (D) and acceptor (A) materials. Upon optical excitation photons absorbed in one of these materials produce intramolecular excitons which can diffuse to the D–A interface and form at the interface the interfacial CT states. The interfacial CT state dissociates into a geminate pair of the non-equilibrium mobile electron and hole. In the present study, an empirical model describing thermalization of the non-equilibrium charges within the Coulomb well is proposed. Efficiency of the interfacial CT state dissociation into a pair of free charges is found as a function of the electric field applied, effective temperature and diffusion length of non-equilibrium electron-hole pairs.

作者简介

L. Lukin

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: leonid.v.lukin@gmail.com
俄罗斯联邦, Moscow

参考

  1. J.-L. Brédas, J.E. Norton, J. Cornil, V. Coropceany. Acc. Chem. Res. 42, 1691 (2009). https://doi.org/10.1021/ar900099h
  2. T.M. Clarke, J.R. Durrant. Chem. Rev. 110, 6736 (2010). https://doi.org/10.1021/cr900271s
  3. A.Yu. Sosorev, D.Yu. Godovsky, D.Yu. Paraschuk. Phys. Chem. Chem. Phys. 20, 3658 (2018). https://doi.org/10.1039/c7cp06158g
  4. L.V. Lukin. Russian J. Phys. Chem. B: Focus on Physics, 17, 1300 (2023). https://doi.org/10.1134/S1990793123060180
  5. K. Vandewal. Annu. Rev. Phys. Chem. 67, 113 (2016). https://doi.org/10.1146/annurev-physchem-040215- 112144
  6. A.E. Jailaubekov, A.P. Willard, J.R. Tritsch, W.-L. Chan et al. Nature Mater. 12, 66 (2013). https://doi.org/10.1038/NMAT3500
  7. K. Chen, A.J. Barker, M.E. Reish, K.C. Gordon, J.M. Hodgkiss. J. Am. Chem. Soc. 135, 18502 (2013). https://doi.org/10.1021/ja408235h
  8. G. Grancini, M. Maiuri, D. Fazzi, A. Petrozza, H.-J. Egelhaaf et al. Nature Mater. 12, 29 (2013). https://doi.org/10.1038/NMAT3502
  9. A.A. Bakulin, A. Rao, V.G. Pavelyev, P.H.M. van Loosdrecht, M.S. Pshenichnikov, D. Niedzialek, J. Cornil, D. Beljonne, R.H. Friend. Science, 335, 1340 (2012).
  10. H. Ohkita, S. Cook, Y. Astuti, W. Duffy, S. Tierney, W. Zhang, M. Heeney, L. Mcculloch, J. Nelson, D.D.C. Bradley, J.R. Durrant, J. Am. Chem. Soc. 130, 3030 (2008).
  11. S. Gélinas, A. Rao, A. Kumar, S.L. Smith, A.W. Chin, J. Clark, T.S.van der Poll, G.C. Bazan, R.H. Friend. Science, 343, 512 (2014).
  12. A.C. Jakowetz, M.L. Böhm, J. Zhang, A. Sadhanala, S. Huettner, A.A. Bakulin, A. Rao, R.H. Friend. J. Am. Chem. Soc. 138, 11672 (2016). https://doi.org/10.1021/jacs.6b05131
  13. K. Vandewal, S. Albrecht, E.T. Hoke, K.R. Graham, J. Widmer et al. Nature Mater. 13, 63 (2014).
  14. J.D. Servaites, B.M. Savoie, J.B. Brink, T.J. Marks, M.A. Ratner. Energy Environ. Sci. 5, 8343 (2012).
  15. M. Hilczer, M. Tachiya. J. Phys. Chem. C, 114, 6808 (2010).
  16. V.A. Trukhanov, V.V. Bruevich, D.Y. Paraschuk. Phys. Rev. B: Condens. Matter Mater. Phys. 84, 205318 (2011).
  17. M. Wiemer, A.V. Nenashev, F. Jansson, S.D. Baranovskii. Appl. Phys. Lett. 99, 013302 (2011). https://doi.org/10.1063/1.3607481
  18. S.D. Baranovskii, M. Wiemer, A.V. Nenashev, F. Jansson, F. Gebhard. J. Phys. Chem. Lett. 3, 1214 (2012). https://doi.org/10.1021/jz300123k
  19. S. Tscheuschner, H. Bässler, K. Huber, A. Köhler. J. Phys. Chem. B, 119, 10359 (2015). https://doi.org/10.1021/acs.jpcb.5b05138
  20. L.V. Lukin. Chem. Phys. 551, 111327 (2021). https://doi.org/10.1016/j.chemphys.2021.111327
  21. A. Devižis, A. Serbenta, K. Meerholz, D. Hertel, V. Gulbinas. Phys. Rev. Lett. 103, 027404 (2009). https://doi.org/10.1103/PhysRevLett.103.027404
  22. D.A. Vithanage, A. Devižis, V. Abramavičius, Y. Infahsaeng, D. Abramavičius, R.C.I. MacKenzie, P.E. Keivanidis, A. Yartsev, D. Hertel, J. Nelson, V. Sundström, V. Gulbinas. Nature Commun. 4, 2334 (2013). https://doi.org/10.1038/ncomms3334
  23. A. Melianas, V. Pranculis, Y. Xia, N. Felekidis, V. Gulbinas, M. Kemerink. Adv. Energy Mater. 7, 1602143 (2017).
  24. S. Baranovski, O. Rubel, in: S. Baranovski (Ed.) Charge Transport in Disordered Solids with Application in Electronics, John Wiley & Sons, Chichester, 2006, Chapter 6. P. 221–266.
  25. L. Onsager. Phys. Rev. 54, 554 (1938).
  26. K. Seki, M. Wojcik. J. Phys. Chem. C, 121, 3632 (2017).
  27. K.M. Hong, J. Noolandi. J. Chem. Phys. 68, 5163 (1978).
  28. D. Mauzerall, S.G. Ballard. Annu. Rev. Phys. Chem. 33, 377 (1982).
  29. H.C.F. Martens, J.N. Huiberts, P.W.M. Blom. Appl. Phys. Letters. 77, 1852 (2000). https://doi.org/10.1063/1.1311599
  30. A. Kumar, P.K. Bhatnagar, P.C. Mathur, M. Husain, S. Sengupta, J. Kumar. J. Appl. Phys. 98, 024502 (2005). https://doi.org/10.1063/1.1968445
  31. K.M. Coakley, M.D. McGehee. Chem. Mater. 16, 4533 (2004). https://doi.org/10.1021/cm049654n
  32. R. Noriega, J. Rivnay, K. Vandewal, F.P.V. Koch, N. Stingelin, P. Smith, M.F. Toney, A. Salleo. Nature Mater. 12, 1038 (2013).
  33. A. Devižis, D. Hertel, K. Meerholz, V. Gulbinas, J.-E. Moser. Organic Electronics, 15, 3729 (2014).
  34. V.D. Mihailetchi, J.K.J. van Duren, P.W.M. Blom, J.C. Hummelen, R.A.J. Janssen, J.M. Kroon, M.T. Rispens, W.J.H. Verhees, M.M. Wienk. Advan. Funct. Mater. 13, 43 (2003).
  35. S. Kobayashi, T. Takenobu, S. Mori, A. Fujiwara, Y. Iwasa, Sci. Technol. Adv. Mater. 4, 371 (2003).
  36. J. Noolandi, K.M. Hong. J. Chem. Phys. 70, 3230 (1979).
  37. A.A. Bakulin, S.D. Dimitrov, A. Rao, P.C.Y. Chow, C.B. Nielsen, B.C. Schroeder, I. McCulloch, H.J. Bakker, J.R. Durrant, R.H. Friend. J. Phys. Chem. Lett. 4, 209 (2013). https://doi.org/10.1021/jz301883y
  38. A.A. Bakulin, C. Silva, E. Vella. J. Phys. Chem. Lett. 7, 250 (2016). https://doi.org/10.1021/acs.jpclett.5b01955
  39. Y. Dong, H. Cha, J. Zhang, E. Pastor, P.S. Tuladhar, I. McCulloch, J.R. Durrant, A.A. Bakulin. J. Chem. Phys. 150, 104704 (2019). https://doi.org/10.1063/1.5079285
  40. T. Hahn, J. Geiger, X. Blase, I. Duchemin, D. Niedzialek, S. Tscheuschner, D. Beljonne, H. Bässler, A. Köhler. Adv. Funct. Mater. 25, 1287 (2015). https://doi.org/10.1002/adfm.201403784
  41. G.V. Simbirtseva, N.P. Piven’, S.D. Babenko. Russ. J. Phys. Chem. B: Focus on Physics, 16, 323 (2022). https://doi.org/10.1134/S1990793122020233
  42. G.N. Gerasimov, V.F. Gromov, M.I. Ikim, L.I. Trakhtenberg. Russ. J. Phys. Chem. B: Focus on Physics, 15, 1072 (2021). https://doi.org/10.1134/S1990793121060038
  43. G.V. Simbirtseva, S.D. Babenko. Russ. J. Phys. Chem. B: Focus on Physics, 17, 1309 (2023). https://doi.org/10.1134/S1990793123060222
  44. R.A. Marcus and N. Sutin. Biochim. Biophys. Acta Rev. Bioenergetics, 811, 265 (1985). https://doi.org/10.1016/0304-4173(85)90014-X
  45. R.M. Williams, J.M. Zwier, J.W. Verhoeven. J. Am. Chem. Soc. 117, 4093 (1995). https://doi.org/10.1021/ja00119a025
  46. С. Leng, H. Qin, Y. Si, Y. Zhao. J. Phys. Chem. C, 118, 1843 (2014).
  47. H. Yan, S. Chen, M. Lu, X. Zhu, Y. Li, D. Wu, Y. Tu, X. Zhua. Mater. Horiz. 1, 247 (2014). https://doi.org/10.1039/C3MH00105A
  48. K. Vandewal, K. Tvingstedt, A. Gadisa, O. Inganäs, J.V. Manca. Phys. Rev. B, 81, 125204 (2010). https://doi.org/10.1103/PhysRevB.81.125204
  49. T. Unger, S. Wedler, F.J. Kahle, U. Scherf, H. Bässler, A. Köhler. J. Phys. Chem. C, 121, 22739 (2017). https://doi.org/10.1021/acs.jpcc.7b09213
  50. Y. Wang, L.T. Cheng. J. Phys. Chem. 96, 1530 (1992).
  51. Y. Wang, J. Phys. Chem. 96, 764 (1992).
  52. A.J. Ward , A. Ruseckas , M.M. Kareem , B. Ebenhoch, L.A. Serrano, M. Al-Eid, B. Fitzpatrick, V.M. Rotello, G. Cooke, I.D.W. Samuel. Advan. Mater. 27, 2496 (2015). https://doi.org/10.1002/adma.201405623
  53. B.P. Karsten, R.K.M. Bouwer, J.C. Hummelen, R.M. Williams, R.A.J. Janssen. Photochem. Photobiol. Sci. 9, 1055 (2010). https://doi.org/10.1039/c0pp00098a
  54. D. Veldman, S.M.A. Chopin, S.C.J. Meskers, R.A.J. Janssen. J. Phys. Chem. A, 112, 8617 (2008). https://doi.org/10.1021/jp805949r
  55. T. Liu, D.L. Cheung, A. Troisi. Phys. Chem. Chem. Phys. 13, 21461 (2011). https://doi.org/10.1039/C1CP23084K

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».