Thermodynamics of sublimation and the effect of aggregation on the electronic absorption spectra of etioporphyrins Cu-etiop-III and VO-etiop-III
- 作者: Eroshin A.V.1, Zhabanov Y.A.1,2, Stuzhin P.A.1, Pakhomov G.L.1,2
-
隶属关系:
- Research Institute of Chemistry of Macroheterocyclic Compounds, Ivanovo State University of Chemistry and Technology
- Institute for Physics of Microstructures of the Russian Academy of Sciences
- 期: 卷 44, 编号 5 (2025)
- 页面: 76-87
- 栏目: Динамика фазовых переходов
- URL: https://journal-vniispk.ru/0207-401X/article/view/295123
- DOI: https://doi.org/10.31857/S0207401X25050092
- ID: 295123
如何引用文章
详细
In this paper, a comparative experimental and theoretical study of two etioporphyrin complexes (Cu-EtioP-III and VO-EtioP-III) with transition metals is carried out. The sublimation enthalpies of Cu-EtioP-III and VO-EtioP-III were determined to be 145(3) kJ/mol and 195(5) kJ/mol, respectively using the Knudsen effusion method with mass spectrometric control of the vapor composition. The electronic absorption spectra of vacuum-sublimated Cu-EtioP-III layers were simulated using TD-DFT calculations for mono-, di-, tetra- and hexameric forms with the geometric structure corresponding to the crystal unit cell. Comparison of the results with similar data for VO-EtioP-III allows us to draw conclusions about the ability of the simplest natural porphyrinoids to form intermolecular bonds during aggregation (in thin layers, crystals).
全文:

作者简介
A. Eroshin
Research Institute of Chemistry of Macroheterocyclic Compounds, Ivanovo State University of Chemistry and Technology
编辑信件的主要联系方式.
Email: eroshin_av@isuct.ru
俄罗斯联邦, Ivanovo
Yu. Zhabanov
Research Institute of Chemistry of Macroheterocyclic Compounds, Ivanovo State University of Chemistry and Technology; Institute for Physics of Microstructures of the Russian Academy of Sciences
Email: eroshin_av@isuct.ru
俄罗斯联邦, Ivanovo; Nizhny Novgorod
P. Stuzhin
Research Institute of Chemistry of Macroheterocyclic Compounds, Ivanovo State University of Chemistry and Technology
Email: eroshin_av@isuct.ru
俄罗斯联邦, Ivanovo
G. Pakhomov
Research Institute of Chemistry of Macroheterocyclic Compounds, Ivanovo State University of Chemistry and Technology; Institute for Physics of Microstructures of the Russian Academy of Sciences
Email: eroshin_av@isuct.ru
俄罗斯联邦, Ivanovo; Nizhny Novgorod
参考
- Senge M.O., Sergeeva N.N., Hale K.J. // Chem. Soc. Rev. 2021. V. 50. P. 4730. https://doi.org/10.1039/c7cs00719a
- Koifman O.I., Stuzhin P.A., Travkin V.V., Pakhomov G.L. // RSC Adv. 2021. V. 11. № 25. P. 15131. https://doi.org/10.1039/d1ra01508g
- Cherepanov D.A., Milanovskii G.E., Aibush A.V. et al. // Khim. Fizika. 2023. V. 42. № 6. P. 77. https://doi.org/10.31857/S0207401X23060031
- Basova T.V., Belykh D.V., Vashurin A.S., Klyamer D.D., Koifman O.I., Krasnov P.O., Lomova T.N., Loukhina I.V., Motorina E.V., Pakhomov G.L., Polyakov M.S., Semeikin A.S., Stuzhin P.A. et al. // J. Struct. Chem. 2023. V. 64. № 5. P. 1. https://doi.org/10.1134/S0022476623050037
- Senge M.O., Davis M. // J. Porphyrins Phthalocyanines. 2010. V. 14. № 7. P. 557. https://doi.org/10.1142/S1088424610002495
- Koifman O.I., Koptyaev A.I., Travkin V.V., Yunin P.A., Somov N.V., Masterov D.V., Pakhomov G.L. // Colloids Interfaces. 2022. V. 6. № 4. P. 77. https://doi.org/10.3390/colloids6040077
- Ngo H.T., Minami K., Imamura G. et al. // Sensors. 2018. V. 18. № 5. P. 1640. https://doi.org/10.1142/S1088424610002495
- Burtsev I.D., Egorov A.E., Kostyukov A.A. et al. // Khim. Fizika. 2022. V. 41. № 2. P. 41. https://doi.org/10.31857/S0207401X22020029
- Povolotskii A.V., Soldatova D.A., Lukyanov D.A. et al. // Khim. Fizika. 2023. V. 42. № 12. P. 70. https://doi.org/10.31857/S0207401X23120087
- Koifman O.I., Rychikhina E.D., Yunin P.A., Koptyaev A.I., Sachkov Yu.I., Pakhomov G.L. // Colloids Surf., A. 2022. V. 648. P. 129284. https://doi.org/10.1016/j.colsurfa.2022.129284
- Travkin V.V., Sachkov Yu.I., Koptyaev A.I., Pakhomov G.L. // Chem. Phys. 2023. V. 573. P. 112014. https://doi.org/10.1016/j.chemphys.2023.112014
- Pakhomov G.L., Koptyaev A.I., Yunin P.A., Somov N.V., Semeikin A.S., Rychikhina E.D., Stuzhin P.A. // ChemistrySelect. 2023. V. 8. № 45. P. e202303271. https://doi.org/10.1002/slct.202303271
- Koptyaev A.I., Rychikhina E.D., Zhabanov Yu.A., Travkin V.V., Pakhomov G.L. // Supramol. Mater. (China). 2024. V. 3. № 1. P. 100075. https://doi.org/10.1016/j.supmat.2024.100075
- Zhabanov Yu.A., Eroshin A.V., Koifman O.I., Travkin V.V., Pakhomov G.L. // Macroheterocycles. 2024. V. 17. № 1. P. 4. https://doi.org/10.6060/mhc245693p
- Bader R.F.W. Atoms in Molecules. Encycl. Comput. Chem. Chichester, UK: J. Wiley & Sons, 2002. https://doi.org/10.1002/0470845015.caa012
- Neese F. // WIREs Comput. Mol. Sci. 2012. V. 2. № 1. P. 73. https://doi.org/10.1002/wcms.81
- Neese F. // Ibid. 2022. V. 12. № 5. P. e1606. https://doi.org/10.1002/wcms.1606
- Grimme S., Brandenburg J.G., Bannwarth C. et al. // J. Chem. Phys. 2015. V. 143. № 5. P. 054107. https://doi.org/10.1063/1.4927476
- Praveen P.A., Saravanapriya D., Bhat S.V. et al. // Mater. Sci. Semicond. Process. 2024. V. 173. P. 108159. https://doi.org/10.1016/j.mssp.2024.108159
- Bannwarth Ch., Grimme S. // Comput. Theor. Chem. 2014. V. 1040–1041. P. 45. https://doi.org/10.1016/j.comptc.2014.02.023
- Martynov A.G., Mack J., May A.K. et al. // ACS Omega. 2019. V. 4. № 4. P. 7265. https://doi.org/10.1021/acsomega.8b03500
- Lu T., Chen F. // J. Comput. Chem. 2012. V. 33. № 5. P. 580. https://doi.org/10.1002/jcc.22885
- Pogonin A.E., Krasnov A.V., Zhabanov Yu.A. et al. // Macroheterocycles. 2012. V. 5. № 4–5. P. 315. https://doi.org/10.6060/mhc2012.121109g
- Pogonin A.E., Tverdova N.V., Ischenko A.A. et al. // J. Mol. Struct. 2015. V. 1085. P. 276–285. https://doi.org/10.1016/j.molstruc.2014.12.089
- Perlovich G.L., Golubchikov O.A., Klueva M.E. // J. Porphyrins Phthalocyanines. 2000. V. 4. № 8. P. 699. https://doi.org/10.1002/1099-1409(200012)4:8<699:: AID-JPP284>3.0.CO;2-M
- Chickos J.S., Acree Jr. W.E. // J. Phys. Chem. Ref. Data. 2002. V. 31. № 2. P. 537. https://doi.org/10.1063/1.1475333
- Kudin L.S., Dunaev A.M., Motalov V.B. et al. // J. Chem. Thermodyn. 2020. V. 151. P. 106244. https://doi.org/10.1016/j.jct.2020.106244
- Espinosa E., Molins E., Lecomte C. // Chem. Phys. Lett. 1998. V. 285. № 3–4. P. 170. https://doi.org/10.1016/S0009-2614(98)00036-0
- Eroshin A.V., Otlyotov A.A., Kuzmin I.A., Stuzhin P.A., Zhabanov Y.A. // Int. J. Mol. Sci. 2022. V. 23. № 2. P. 939. https://doi.org/10.3390/ijms23020939
- Eroshin A.V., Koptyaev A.I., Otlyotov A.A., Minenkov Y., Zhabanov Y.A. // Int. J. Mol. Sci. 2023. V. 24. № 8. P. 7070. https://doi.org/10.3390/ijms24087070
- Koifman O.I., Rychikhina E.D., Travkin V.V., Sachkov Y.I., Stuzhin P.A., Somov N.V., Yunin P.A., Zhabanov Yu.A., Pakhomov G.L. // ChemPlusChem. 2023. V. 88. № 5. P. e202300141. https://doi.org/10.1002/cplu.202300141
- Nemykin V.N., Hadt R.G. // J. Phys. Chem. A. 2010. V. 114. № 45. P. 12062. https://doi.org/10.1021/jp1083828
- Gouterman M. // J. Mol. Spectrosc. 1961. V. 6. P. 138. https://doi.org/10.1016/0022-2852(61)90236-3
- Gouterman M., Wagnière G.H., Snyder L.C. // Ibid. 1963. V. 11. № 1–6. P. 108. https://doi.org/10.1016/0022-2852(63)90011-0
- Mironov N.A., Milordov D.V., Abilova G.R. et al. // Pet. Chem. 2019. V. 59. P. 1077. https://doi.org/10.1134/S0965544119100074
补充文件
