Exciton binding energies in biphenyl derivatives with ferrocenyl and fluorine-containing germyl substituents

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

To increase the efficiency of organic photovoltaic devices, it is necessary to search for new promising compounds that provide efficient charge separation during absorption in the optical region of the spectrum. As such compounds, biphenyl derivatives with ferrocenyl and fluorine-containing germyl substituents have been studied in the present work. The DFT and TD-DFT methods (B3LYP, CAM-B3LYP, PBE0, wB97XD) have been used to study the structures and energies of excited states of these derivates and to estimate the exciton binding energies in materials based on them in vacuum and condensed matter. For a number of compounds, the obtained exciton binding energies are close to zero, and in a separate case even less than zero, which demonstrates the prospect of their synthesis and use.

About the authors

D. A. Aleshin

Lobachevsky State University of Nizhniy Novgorod

Email: aleshindan2@gmail.com
Nizhny Novgorod, Russia

N. L. Ermolaev

Lobachevsky State University of Nizhniy Novgorod

Email: aleshindan2@gmail.com
Nizhny Novgorod, Russia

S. V. Panteleev

Lobachevsky State University of Nizhniy Novgorod

Email: aleshindan2@gmail.com
Nizhny Novgorod, Russia

E. V. Suleimanov

Lobachevsky State University of Nizhniy Novgorod

Email: aleshindan2@gmail.com
Nizhny Novgorod, Russia

S. K. Ignatov

Lobachevsky State University of Nizhniy Novgorod

Author for correspondence.
Email: aleshindan2@gmail.com
Nizhny Novgorod, Russia

References

  1. Milichko V.A., Shalin A.S., Mukhin I.S. et al. // Usp. Fiz. Nauk. 2016. V. 186. № 8. P. 801. https://doi.org/10.3367/UFNr.2016.02.037703
  2. Scharber M.C. // Adv. Mater. 2016. V. 28. № 10. P. 1994. https://doi.org/10.1002/adma.201504914
  3. Hou J., Inganäs O., Friend R.H. et al. // Nat. Mater. 2018. V. 17. № 2. P. 119. https://doi.org/10.1038/nmat5063
  4. Zhang G., Lin F.R., Qi F. et al. // Chem. Rev. 2022. V. 122. № 18. P. 14180. https://doi.org/10.1021/acs.chemrev.1c00955
  5. Price M.B., Hume P.A., Ilina A. et al. // Nat. Commun. 2022. V. 13. № 1. P. 2827. https://doi.org/10.1038/s41467-022-30127-8
  6. Zhang X.-X., Yu X.-F., Xiao B. // J. Phys. Chem. A. 2023. V. 127. № 44. P. 9291. https://doi.org/10.1021/acs.jpca.3c06000
  7. Solak E.K., Irmak E. // RSC Adv. 2023. V. 13. № 18. P. 12244. https://doi.org/10.1039/D3RA01454A
  8. Al-Taher A.H., Al-Badry L.F., Semiromi E.H. // Russ. J. Phys. Chem. B. 2021. V. 15. № S1. P. S1. https://doi.org/10.1134/S1990793121090025
  9. Yu Q.-C., Fu W.-F., Wan J.-H. et al. // ACS Appl. Mater. Interfaces. 2014. V. 6. № 8. P. 5798. https://doi.org/10.1021/am5006223
  10. Brédas J.-L., Norton J.E., Cornil J. et al. // Acc. Chem. Res. 2009. V. 42. № 11. P. 1691. https://doi.org/10.1021/ar900099h
  11. Lemaur V., Steel M., Beljonne D. et al. // J. Amer. Chem. Soc. 2005. V. 127. № 16. P. 6077. https://doi.org/10.1021/ja042390l
  12. Kaake L.G., Jasieniak J.J., Bakus R.C. et al. // Ibid. 2012. V. 134. № 48. P. 19828. https://doi.org/10.1021/ja308949m
  13. Vandewal K., Mertens S., Benduhn J., Liu Q. // J. Phys. Chem. Lett. 2020. V. 11. № 1. P. 129. https://doi.org/10.1021/acs.jpclett.9b02719
  14. Lukin L.V. // Russ. J. Phys. Chem. B. 2023. V. 17. № 6. P. 1300. https://doi.org/10.1134/S1990793123060180
  15. Kronik L., Neaton J.B. // Annu. Rev. Phys. Chem. 2016. V. 67. № 1. P. 587. https://doi.org/10.1146/annurev-physchem-040214- 121351
  16. Dimitriev O.P. // Chem. Rev. 2022. V. 122. № 9. P. 8487. https://doi.org/10.1021/acs.chemrev.1c00648
  17. Gorokhov V.V., Knox P.P., Korvatovsky B.N. et al. // Russ. J. Phys. Chem. B. 2023. V. 17. № 3. P. 571. https://doi.org/10.1134/S199079312303020X
  18. Cherepanov D.A., Milanovsky G.E., Aybush A.V. et al. // Russ. J. Phys. Chem. B. 2023. V. 17. № 3. P. 584. https://doi.org/10.1134/S1990793123030181
  19. Bazlov S.V., Feskov S.V., Ivanov A.I. // Russ. J. Phys. Chem. B. 2017. V. 11. № 2. P. 242. https://doi.org/10.1134/S1990793117020026
  20. Cherepanov D.A., Milanovsky G.E., Nadtochenko V.A. et al. // Russ. J. Phys. Chem. B. 2023. V. 17. № 3. P. 594. https://doi.org/10.1134/S1990793123030193
  21. Ermolaev N.L., Lenin I.V., Fukin G.K. et al. // J. Organomet. Chem. 2015. V. 797. P. 83. https://doi.org/10.1016/j.jorganchem.2015.07.027
  22. Ermolaev N.L., Fukin G.K., Shavyrin A.S. et al. // Ibid. 2023. V. 983. P. 122535. https://doi.org/10.1016/j.jorganchem.2022.122535
  23. Chuhmanov E.P., Ermolaev N.L., Plakhutin B.N., Ignatov S.K. // Comput. Theor. Chem. 2018. V. 1123. P. 50. https://doi.org/10.1016/j.comptc.2017.11.007
  24. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fuku­da R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J.A., Jr., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas Ö., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D.J. Gaussian 09, Revision A.01. Wallingford CT: Gaussian Inc., 2009.
  25. Tomasi J., Mennucci B., Cammi R. // Chem. Rev. 2005. V. 105. № 8. P. 2999. https://doi.org/10.1021/cr9904009
  26. Lu T., Chen F. // J. Comput. Chem. 2012. V. 33. № 5. P. 580. https://doi.org/10.1002/jcc.22885
  27. Gregg B.A. // J. Phys. Chem. B. 2003. V. 107. № 20. P. 4688. https://doi.org/10.1021/jp022507x
  28. Hains A.W., Liang Z., Woodhouse M.A. et al. // Chem. Rev. 2010. V. 110. № 11. P. 6689. https://doi.org/10.1021/cr9002984
  29. Sun H., Hu Z., Zhong C. et al. // J. Phys. Chem. C. 2016. V. 120. № 15. P. 8048. https://doi.org/10.1021/acs.jpcc.6b01975
  30. Benatto L., Koehler M. // Ibid. 2019. V. 123. № 11. P. 6395. https://doi.org/10.1021/acs.jpcc.8b12261
  31. Zhu L., Yi Y., Wei Z. // Ibid. 2018. V. 122. № 39. P. 22309. https://doi.org/10.1021/acs.jpcc.8b07197
  32. Bredas J.-L. // Mater. Horiz. 2014. V. 1. № 1. P. 17. https://doi.org/10.1039/C3MH00098B
  33. Zhu L., Zhang J., Guo Y. et al. // Angew. Chem. 2021. V. 133. № 28. P. 15476. https://doi.org/10.1002/ange.202105156

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).