Numerical simulation of supersonic turbulent combustion of hydrogen in a stream of hot humid air
- Autores: Nikonov А.М.1, Kharchenko N.A.1
-
Afiliações:
- Moscow Aviation Institute (National Research University)
- Edição: Volume 44, Nº 4 (2025)
- Páginas: 69-78
- Seção: Combustion, explosion and shock waves
- URL: https://journal-vniispk.ru/0207-401X/article/view/288407
- DOI: https://doi.org/10.31857/S0207401X25040087
- ID: 288407
Citar
Resumo
The paper presents the results of solving the validation problem of turbulent combustion of a hydrogen jet in a supersonic flow of hot humid air in a symmetrical channel. Special attention is paid to the solution of the system of equations of chemical kinetics, which imposes a significant restriction on the time step, as well as the analysis of kinetic schemes used in the solution. The main computational difficulty is the detailed resolution of the wall region, due to the injection of a hydrogen jet into a turbulent boundary layer, in order to further reproduce experimentally obtained distributions of mole fractions and temperature in the outlet section of the channel, as well as the location of the ignition point.
Texto integral

Sobre autores
А. Nikonov
Moscow Aviation Institute (National Research University)
Autor responsável pela correspondência
Email: amnikonov@mai.education
Rússia, Moscow
N. Kharchenko
Moscow Aviation Institute (National Research University)
Email: amnikonov@mai.education
Rússia, Moscow
Bibliografia
- S.M. Frolov, V.S. Ivanov. Russ. J. Phys. Chem. B 15, 318 (2021). https://doi.org/10.1134/S1990793121020184
- V.N. Mikhalkin, S.I. Sumskoi, A.M. Tereza et al. Russ. J. Phys. Chem. B 16, 629 (2022). https://doi.org/10.1134/S1990793122040261
- S.M. Bosnyakov, M.E. Berezko, Yu.N. Deryugin et al. Math. modeling 35, 69 (2023). https://doi.org/10.20948/mm-2023-10-05
- N.A. Kharchenko, A.M. Nikonov. Math. modeling and num. methods 2, 100 (2023). https://doi.org/10.18698/2309-3684-2023-2-100128
- V.Ya. Basevich, A.A. Belyaev, S.M. Frolov et al. Russ. J. Phys. Chem. B 13, 75 (2019). https://doi.org/10.1134/S1990793119010044
- O.A. Bessonov, N.A. Kharchenko. Software Engineering 12, 302 (2021). https://doi.org/10.17587/prin.12.302-310
- N.A. Kharchenko. Numerical modelling of aerothermodynamics of high-speed aircraft. Phd Thesis (Phys. – Math.). Moscow: MIPT, 2021.
- F.R. Menter, M. Kuntz. Langtry R. Turbulence, Heat and Mass Transfer 4, 625 (2003).
- A.A. Matyushenko, A.V. Garabaruk. IOP Conf. Series: Journal of Physics 929, 6 (2017). https://doi.org/10.1088/1742-6596/929/1/012102
- N.A. Kharchenko, A.M. Nikonov, N.A. Nosenko. Proc. XXXIII scient. and tech. conf. on aerodynamics, TSAGI, 101 (2022).
- B.A. Zemlyansky, V.V. Lunev, V.I. Vlasov et al. Convective heat transfer of aircraft (Fizmatlit, Moscow, 2014).
- V.Ya. Basevich, A.A. Belyaev, V.S. Ivanov et al. Russ. J. Phys. Chem. B 13, 636 (2019). https://doi.org/10.1134/S1990793119040171
- Degtyar V.G., Son E.E. Hypersonic aircraft (Yanus-K, Moscow, 2018).
- L.V. Gurvich, I.V. Veits, V.A. Medvedev. Thermodynamics properties of individual substance (Nauka, Moscow, 1978).
- V.M. Zhdanov, V.S. Galkin, O.A. Gordeev et al. Physico-chemical processes in gas dynamics. Handbook. Models of molecular transfer processes in physico-chemical gas dynamics / Edited by S.A. Losev. 3 (Fizmatlit, Moscow, 2012).
- R.B. Bird, W.E. Stewart, E.W. Lightfoor. Transport Phenomena. 2nd ed / Edited by P. Kulek (Wiley, N.Y., 2002).
- M.-S. Liou. J. Comput. Phys. 129, 364 (1996). https://doi.org/10.1006/JCPH.1996.0256
- K. Kitamura. Advancement of Shock Capturing Computational Fluid Dynamics Methods: Numerical Flux Functions in Finite Volume Method (Springer, Singapore, 2020). https://doi.org/10.1007/978-981-15-9011-5
- SS Chen, FJ Cai, HC Xue et al. Appl. Math. Model 77, 1065 (2020). https://doi.org/10.1016/j.apm.2019.09.005
- I.A. Kryukov, I.E. Ivanov, E.V. Larina. Physical-Chemical Kinetics in Gas Dynamics 22, 28 (2021). https://doi.org/10.33257/PhChGD.22.1.902
- K. Michalak, C. Ollivier-Gooch. Proc. 46th Aerospace Sciences Meeting. AIAA: Reno, Nevada, 15 10002 (2008). https://doi.org/10.2514/6.2008-776
- M.C. Burrows, A.P. Kurkov. AIAA J. 11, 1217 (1973).
- Z. Gao, C. Jiang, S. Pan et al. AIAA J. 53, 1949 (2015). https://doi.org/10.2514/1.J053585
- J.S. Evans, C.J. Schexnayder. Proc. 17th Aerospace Sciences Meeting. AIAA: New Orleans, LA, Paper 79-0355 (1979). https://doi.org/10.2514/6.1979-355
- J.H. Tien, J.S. Stalker. Combustion and Flame 130, 329 (2002). https://doi.org/10.1016/S0010-2180(02)00371-1
Arquivos suplementares
