КИНЕТИЧЕСКАЯ МОДЕЛЬ ГЕМОЛИЗА ЭРИТРОЦИТОВ ПОД ДЕЙСТВИЕМ АЗОГЕНЕРАТОРА ПЕРОКСИДНЫХ РАДИКАЛОВ

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Разработана кинетическая модель гемолиза суспензии эритроцитов под действием азогенератора пероксидных радикалов AAPH, основанная на предположении о гемолизе клетки как макроскопическом следствии развивающегося в липидной области мембраны процесса пероксидного окисления липидов, приводящего к накоплению определенного молекулярного продукта, критическая концентрация которого вызывает гемолиз. Кинетические кривые образования предполагаемых факторов гемолиза рассчитаны в результате решения прямой задачи химической кинетики. Из-за гетерогенности популяции эритроцитов их морфологические и иные характеристики, включая отклик на воздействие гемолитического фактора, оказываются статистически распределенными. В связи с этим в качестве математической основы для точного решения задачи о взаимосвязи степени гемолиза с концентрацией действующего фактора была использована функция нормального распределения Гаусса. Это позволило с хорошим приближением описать результаты гемолитического эксперимента.

Об авторах

Б. Л. Психа

Федеральный исследовательский центр проблем химической физики и медицинской химии

Email: psi@icp.ac.ru
Черноголовка, Россия

Е. М. Соколова

Федеральный исследовательский центр проблем химической физики и медицинской химии

Email: psi@icp.ac.ru
Черноголовка, Россия

Н. А. Дубенская

Московский государственный университет им. М.В. Ломоносова

Email: psi@icp.ac.ru
Москва, Россия

Н. И. Нешев

Федеральный исследовательский центр проблем химической физики и медицинской химии

Автор, ответственный за переписку.
Email: psi@icp.ac.ru
Черноголовка, Россия

Список литературы

  1. Sæbø I.P., Bjørås M., Franzyk H. et al. // Intern. J. Mol. Sci. 2023. V 24(3). Article 2914. https://doi.org/10.3390/ijms24032914
  2. Шевченко О.Г. // Биоорган. химия. 2024. Т. 50. № 6. С. 720. https://doi.org/10.31857/s0132342324060026
  3. Niki E. // Methods Enzymol. 1990. V. 186. P. 100. https://doi.org/10.1016/0076-6879(90)86095-D
  4. Шевченко О.Г., Шишкина Л.Н. // Успехи соврем. биологии. 2014. Т. 134. № 2. С. 133.
  5. Sato Y., Kamo S., Takahashi T. et al. // Biochemistry. 1995. V. 34. № 28. P. 8940. https://doi.org/10.1021/bi00028a002
  6. Celedón G., Rodriguez I., España J. et al. // Free Radical Res. 2001. V. 34. P. 17. https://doi.org/10.1080/10715760100300031
  7. López-Alarcón C., Fuentes-Lemus E., Figueroa J.D. et al. // Free Radical Biol. Med. 2020. V. 160. P. 78. https://doi.org/10.1016/j.freeradbiomed.2020.06.021
  8. Соколова Е.М., Дубенская Н.А., Психа Б.Л., Нешев Н.И. // Биофизика. 2023. Т. 68. № 4. С. 705. https://doi.org/10.31857/S0006302923040099
  9. Werber J., Wang Y.J., Milligan M. et al. // J. Pharm. Sci. 2011. V. 100. № 8. P. 3307. https://doi.org/10.1002/jps.22578
  10. Wahl R.U.R., Zeng L., Madison S.A. et al. // J. Chem. Soc., Perkin Trans. 2. 1998. № 9. P. 2009. https://doi.org/10.1039/A801624K
  11. Krainev A.G. , Bigelow D.J. // Ibid. 1996. № 4. P. 747. https://doi.org/10.1039/P29960000747
  12. Niki E., Komuro E., Takahashi M. et al. // J. Biol. Chem. 1988. V. 263. № 36. P. 19809. https://doi.org/10.1016/S0021-9258(19)77707-2
  13. Герасимов Г.Я., Левашов В.Ю. // Хим. физика. 2023. Т. 42. № 8. С. 12. https://doi.org/10.31857/S0207401X23080046
  14. Арсентьев С.Д., Давтян А.Г., Манукян З.О. и др. // Хим. физика. 2024. Т. 43. № 1. С. 39. https://doi.org/10.31857/S0207401X24010044
  15. Русина И.Ф., Вепринцев Т.Л., Васильев Р.Ф. // Хим. физика. 2022. Т. 41. № 2. С. 12. https://doi.org/10.31857/S0207401X22020108
  16. Молодочкина С.В., Лошадкин Д.В., Плисс Е.М. // Хим. физика. 2024. Т. 43. № 1. С. 52. https://doi.org/10.31857/S0207401X24010063
  17. Москаленко И.В., Тихонов И.В. // Хим. физика. 2022. Т. 41. № 7. С. 18. https://doi.org/10.31857/S0207401X22070123
  18. Серебрякова О.В., Говорин А.В., Просяник В.И. и др. // Казан. мед. журн. 2008. Т. 89. № 2. С. 132.
  19. Harris W.S., Pottala J.V., Varvel S.A. et al. // Prostaglandins Leukot. Essent. Fatty Acids. 2013. V. 88. № 4. P. 257. https://doi.org/10.1016/j.plefa.2012.12.004
  20. Denisov E.T., Afanas’ev I.B., Oxidation and antioxidants in organic chemistry and biology. Boca Raton (USA): CRC Press, 2005. https://doi.org/10.1201/9781420030853
  21. Chow С.K. //Amer. J. Clin. Nutr. 1975. V. 28. № 7. P. 756. https://doi.org/10.1093/ajcn/28.7.756
  22. Oxy Radicals and Their Scavenger Systems / Eds. Cohen G., Greenwald R.A. Amsterdam: Elsevier Science Publ., 1983. V. 1. P. 26.
  23. Реморова А.А., Рогинский В.А. // Кинетика и катализ. 1991. Т. 32. № 4. С. 808.
  24. Mukai K., Sawada K., Kohno Y. et al. // Lipids. 1993. V. 28. P. 747. https://doi.org/10.1007/BF02535998
  25. Ouchi A., Ishikura M., Konishi K. et al. // Ibid. 2009. V. 44. № 10. P. 935. https://doi.org/10.1007/s11745-009-3339-x
  26. Guéraud F., Atalay M., Bresgen N. et al. // Free Radical Res. 2010. V. 44. № 10. P. 1098. https://doi.org/10.3109/10715762.2010.498477
  27. Valgimigli L. // Biomolecules. 2023. V. 13. № 9. Article 1291. https://doi.org/10.3390/biom13091291
  28. Yoshida Y., Umeno A., Shichiri M. // J. Clin. Biochem. Nutr. 2013. V. 52. № 1. P. 9. https://doi.org/10.3164/jcbn.12-112
  29. Dahle L.K., Hill E.G., Holman R.T. // Arch. Biochem. Biophys. 1962. V. 98. № 2. P. 253. https://doi.org/10.1016/0003-9861(62)90181-9
  30. Pryor W.A., Stanley J.P., Blair E. // Lipids. 1976. V. 11. № 5. Р. 370. https://doi.org/10.1007/BF02532843
  31. Kreuzer F., Yahr W. Z. // J. Appl. Physiol. 1960. V. 15. P. 1117. https://doi.org/10.1152/jappl.1960.15.6.1117
  32. Ивков В.Г., Берестовский Г.Н. Липидный бислой биологических мембран. М.: Наука, 1982.
  33. Waugh R.E., Sarelius I.H. // Amer. J. Physiol. 1996. V. 271. № 6. P. 1847. https://doi.org/10.1152/ajpcell.1996.271.6.C1847
  34. Dupuy A.D., Engelman D.M. // PNAS. 2008. V. 105. № 8. P. 2848. https://doi.org/10.1073/pnas.0712379105
  35. Шурхина Е.С., Нестеренко В.М., Цветаева Н.В. и др. // Клин. лаб. диагност. 2014. № 6. С. 41.
  36. Novinka P., Korab-Karpinski E., Guzik P. // J. Med. Sci. 2019. V. 88. № 1. P. 52. https://doi.org/10.20883/jms.338
  37. Верболович В.П., Подгорный Ю.К., Подгорная Л.М. // Вопр. мед. химии. 1989. Т. 35. № 5. С. 35.
  38. Нешев Н.И. Автореферат дисс. … канд. биол. наук. М., 2002.
  39. Албертс Б., Брей Д., Льюис Дж. и др. Молекулярная биология клетки. Пер. с англ. 2-е изд. М.: Мир, 1994. Т. 1.
  40. Атауллаханов Ф.И., Корунова Н.О., Спиридонов И.С. и др. // Биол. мембраны. 2009. Т. 26. № 3. С. 163.
  41. Cook J.S. // J. Gen. Physiol. 1965. V. 48. № 4. P. 719. https://doi.org/10.1085/jgp.48.4.719
  42. Deuticke B., Heller K.B., Haest C.W. // Biochim. Biophys. Acta. 1986. V. 854. № 2. P. 169. https://doi.org/10.1016/0005-2736(86)90108-2

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».