Modern Trends of the Application of Stem Cells and Their Derivatives during Cryopreservation of Animal Sperm
- Authors: Tambovsky M.A.1, Aimaletdinov А.М.1, Zakirova E.Y.1
-
Affiliations:
- Institute of Fundamental Medicine and Biology, Kazan Federal University
- Issue: Vol 40, No 5 (2023)
- Pages: 328-335
- Section: ОБЗОРЫ
- URL: https://journal-vniispk.ru/0233-4755/article/view/135038
- DOI: https://doi.org/10.31857/S0233475523050110
- EDN: https://elibrary.ru/FDMSUL
- ID: 135038
Cite item
Abstract
Cryopreservation is an important method for preserving sperm from various organisms. However, freezing gametes often leads to various types of cell damage, which affects the outcome of artificial insemination. After thawing, spermatozoa usually have ultrastructural, biochemical and functional changes such as cell membrane and chromatin damage and oxidative stress. Since spermatozoa have limited biosynthetic capacity, they have a low capacity to regenerate. The current trend is to improve the sperm cryopreservation regime using natural extracellular vesicles and stem cells. Extracellular vesicles and stem cells have a potential regenerative effect, as they contain various biologically active molecules affecting sperm repair. This review focuses on current strategies to improve sperm health after cryopreservation. In particular, this review describes the results of studies on the use of extracellular vesicles and stem cells as cryoprotectors during freezing and thawing of spermatozoa.
About the authors
M. A. Tambovsky
Institute of Fundamental Medicine and Biology, Kazan Federal University
Author for correspondence.
Email: maxim.tambovsky.kfu@gmail.com
Russia, 420008, Kazan
А. М. Aimaletdinov
Institute of Fundamental Medicine and Biology, Kazan Federal University
Email: maxim.tambovsky.kfu@gmail.com
Russia, 420008, Kazan
E. Yu. Zakirova
Institute of Fundamental Medicine and Biology, Kazan Federal University
Email: maxim.tambovsky.kfu@gmail.com
Russia, 420008, Kazan
References
- Tao Y., Sanger E., Saewu A., Leveille M.-C. 2020. Human sperm vitrification: The state of the art. Reprod Biol Endocrinol. 18 (1), 17. https://doi.org/10.1186/s12958-020-00580-5
- Ugur M.R., Saber Abdelrahman A., Evans H.C., Gilmore A.A., Hitit M., Arifiantini R.I., Purwantara B., Kaya A., Memili E. 2019. Advances in cryopreservation of bull sperm. Front. Vet. Sci. 6, 268. https://doi.org/10.3389/fvets.2019.00268
- Ombelet W., Van Robays J. 2015. Artificial insemination history: Hurdles and milestones. Facts Views Vis. Obgyn. 7 (2), 137–143.
- Saadeldin I.M, Khalil W.A, Alharbi M.G, Lee S.H. 2020. The current trends in using nanoparticles, liposomes, and exosomes for semen cryopreservation. Animals (Basel). 10 (12), 2281. https://doi.org/10.3390/ani10122281
- Thongphakdee A., Sukparangsi W., Comizzoli P., Chatdarong K. 2020. Reproductive biology and biotechnologies in wild felids. Theriogenology. 150, 360–373. https://doi.org/10.1016/j.theriogenology.2020.02.004
- Yanez-Ortiz I., Catalan J., Rodriguez-Gil J.E., Miro J., Yeste M. 2022. Advances in sperm cryopreservation in farm animals. Cattle, horse, pig and sheep. Anim. Reprod. Sci. 246, 106904. https://doi.org/10.1016/j.anireprosci.2021.106904
- Zakirova E.Y., Shalimov D.V., Garanina E.E., Zhuravleva M.N., Rutland C.S., Rizvanov A.A. 2019. Use of biologically active 3D matrix for extensive skin defect treatment in veterinary practice. Front. Vet. Sci. 6, 76. https://doi.org/10.3389/fvets.2019.00076
- Naumenko E., Zakirova E., Guryanov I., Akhatova F., Sergeev M., Valeeva A., Fakhrullin R. 2021. Composite biodegradable polymeric matrix doped with halloysite nanotubes for the repair of bone defects in dogs. Clays Clay Miner. 69, 522–532.
- Theerakittayakorn K., Thi Nguyen H., Musika J., Kunkanjanawan H., Imsoonthornruksa S., Somredngan S., Ketudat-Cairns M., Parnpai R. 2020. Differentiation induction of human stem cells for corneal epithelial. Int. J. Mol. Sci. 21 (21), 7834. https://doi.org/10.3390/ijms21217834
- Jovic D., Yu Y., Wang D., Wang K., Li H., Xu F., Liu C., Liu J., Luo Y. 2022. A brief overview of global trends in MSC-based cell therapy. Stem Cell. Rev. Rep. 18 (5), 1525–1545. https://doi.org/10.1007/s12015-022-10369-1
- Khubutiya M.S., Vagabov A.V., Temnov A.A., Sklifas A.N. 2014. Paracrine mechanisms of proliferative, anti-apoptotic and anti-inflammatory effects of mesenchymal stromal cells in models of acute organ injury. Cytotherapy. 16, 579–585. https://doi.org/10.1016/j.jcyt.2013.07.017
- Qamar A.Y., Fang X., Kim M.J., Cho J. 2020. Improved viability and fertility of frozen-thawed dog sperm using adipose-derived mesenchymal stem cells. Sci. Rep. 10 (1), 7034. https://doi.org/10.1038/s41598-020-61803-8
- Sun J., Shao Z., Yang Y., Wu D., Zhou X., Yuan H. 2012. Annexin 1 protects against apoptosis induced by serum deprivation in transformed rat retinal ganglion cells. Mol. Biol. Rep. 39, 5543–5551. https://doi.org/10.1007/s11033-011-1358-1
- Lennon N.J., Kho A., Bacskai B.J., Perlmutter S.L., Hyman B.T., Brown R.H., Jr. 2003. Dysferlin interacts with annexins A1 and A2 and mediates sarcolemmal wound-healing. J. Biol. Chem. 278, 50466–50473. https://doi.org/10.1074/jbc.M307247200
- To W.S., Midwood K.S. 2011. Plasma and cellular fibronectin: distinct and independent functions during tissue repair. Fibrogenesis Ttissue Repair. 4, 21. https://doi.org/10.1186/1755-1536-4-21
- Zakirova E.Y., Aimaletdinov A.M., Malanyeva A.G., Rutland C.S., Rizvanov A.A. 2020. Extracellular vesicles: New perspectives of regenerative and reproductive veterinary medicine. Front. Vet. Sci. 7, 594044. https://doi.org/10.3389/fvets.2020.594044
- Ratajczak M.Z., Ratajczak J. 2020. Extracellular microvesicles/exosomes: Discovery, disbelief, acceptance, and the future. Leukemia. 34 (12), 3126–3135. https://doi.org/10.1038/s41375-020-01041-z
- Qamar A.Y., Fang X., Kim M.J., Cho J. 2019. Improved post-thaw quality of canine semen after treatment with exosomes from conditioned medium of adipose-derived mesenchymal stem cells. Animals (Basel). 9 (11), 865. https://doi.org/10.3390/ani9110865
- Mokarizadeh A., Rezvanfar M.A., Dorostkar K., Abdollahi M. 2013. Mesenchymal stem cell derived microvesicles: Trophic shuttles for enhancement of sperm quality parameters. Reprod. Toxicol. 42, 78–84. https://doi.org/10.1016/j.reprotox.2013.07.024
- Mahiddine F.Y., Qamar A.Y., Kim M.J. 2020. Canine amniotic membrane derived mesenchymal stem cells exosomes addition in canine sperm freezing medium. J. Animal Reprod. Biotechnol. 35 (3), 268–272. https://doi.org/10.12750/JARB.35.3.268
- Venugopal C., Shamir C., Senthilkumar S., Babu J.V., Sonu P.K., Nishtha K.J., Rai K.S., K S., Dhanushkodi A. 2017. Dosage and passage dependent neuroprotective effects of exosomes derived from rat bone marrow mesenchymal stem cells: An in vitro analysis. Curr. Gene Ther. 17 (5), 379–390. https://doi.org/10.2174/1566523218666180125091952
- Агейкин А.В., Горелов А.В., Усенко Д.В., Мельников В.Л. 2021. Экзосомы крови как новые биомаркеры инфекционных заболеваний. Медицинское обозрение. 5 (11), 744–748. https://doi.org/10.32364/2587-6821-2021-5-11-744-748
- Chen J., Li P., Zhang T., Xu Z., Huang X., et al. 2021. Review on strategies and technologies for exosome isolation and purification. Front. Bioeng. Biotechnol. 9, 811971. https://doi.org/10.3389/fbioe.2021.811971
- Koike C., Zhou K., Takeda Y., Fathy M., Okabe M., Yoshida T., Nakamura Y., Kato Y., Nikaido T. 2014. Characterization of amniotic stem cells. Cell Reprogram. 16 (4), 298–305. https://doi.org/10.1089/cell.2013.0090
- Kazemnejad S., Khanmohammadi M., Zarnani A-H., Bolouri M.R. 2016. Characteristics of mesenchymal stem cells derived from amniotic membrane: A potential candidate for stem cell-based therapy. In perinatal tissue-derived stem cells: Alternative sources of fetal stem cells. Ed: B. Arjmand. Springer International Publishing, p. 137–169. https://doi.org/10.1007/978-3-319-46410-7_7
- Bosch S., de Beaurepaire L., Allard M., Mosser M., Heichette C., Chrétien D., Jegou D., Bach J.M. 2016. Trehalose prevents aggregation of exosomes and cryodamage. Sci. Rep. 6, 36162. https://doi.org/10.1038/srep36162
- Сысоева А.П., Макарова Н.П., Краевая Е.Е. 2021. Роль внеклеточных везикул семенной плазмы в изменении морфофункциональных характеристик сперматозоидов человека. Клин. эксп. морфология. 10 (4), 5–13. https://doi.org/10.31088/CEM2021.10.4.5-13
- Mahdavinezhad F., Sadighi Gilani M.A, Gharaei R., Ashrafnezhad Z., Valipour J., Shabani Nashtaei M., Amidi F. 2022. Protective roles of seminal plasma exosomes and microvesicles during human sperm cryopreservation. Reprod. Biomed. Online. 45 (2), 341–353.
- Du J., Shen J., Wang Y., Pan C., Pang W., Diao H., Dong W. 2016. Boar seminal plasma exosomes maintain sperm function by infiltrating into the sperm membrane. Oncotarget. 7, 58832–58847. https://doi.org/10.18632/oncotarget.11315
- Zhou W., Stanger S.J., Anderson A.L., Bernstein I.R., De Iuliis G.N., McCluskey A., McLaughlin E.A., Dun M.D., Nixon B. 2019. Mechanisms of tethering and cargo transfer during epididymosome-sperm interactions. BMC Biol. 17 (1), 35. https://doi.org/10.1186/s12915-019-0653-5
- Machtinger R., Laurent L.C., Baccarelli A.A. 2016. Extracellular vesicles: Roles in gamete maturation, fertilization and embryo implantation. Hum. Reprod. Update. 22(2), 182–193. https://doi.org/10.1093/humupd/dmv055
- Goericke-Pesch S., Hauck S., Failing K., Wehrend A. 2015. Effect of seminal plasma vesicular structures in canine frozen-thawed semen. Theriogenology. 84, 1490–1498. https://doi.org/10.1016/j.theriogenology.2015.07.033
- de Almeida Monteiro Melo Ferraz M., Nagashima J.B., Noonan M.J., Crosier A.E., Songsasen N. 2020. Oviductal extracellular vesicles improve post-thaw sperm function in red wolves and cheetahs. Int. J. Mol. Sci. 21(10), 3733. https://doi.org/10.3390/ijms21103733
- Bencharif D., Dordas-Perpinya M. 2020. Canine semen cryoconservation: Emerging data over the last 20 years. Reproduction in Domestic Animals. 55 (2), 61. https://doi.org/10.1111/rda.13629
- Cheng F.P., Wu J.T., Tsai P.S., Chang C.L., Lee S.L., et al. 2005. Effects of cryo-injury on progesterone receptor[s] of canine spermatozoa and its response to progesterone. Theriogenology. 64 (4), 844–854. https://doi.org/10.1016/j.theriogenology.2004.10.021
- Liu S., Li F. 2020. Cryopreservation of single-sperm: Where are we today? Reprod. Biol. Endocrinol.18 (1), 41. https://doi.org/10.1186/s12958-020-00607-x
- de Oliveira R.A., Wolf C.A., de Oliveira Viu M.A., Gambarini M.L. 2013. Addition of glutathione to an extender for frozen equine semen. Equine J. Vet. 33, 1148–1152. https://doi.org/10.1016/j.jevs.2013.05.001
- Peris-Frau P., Soler A.J., Iniesta-Cuerda M., Martín-Maestro A., Sánchez-Ajofrín I., Medina-Chávez D.A., Fernández-Santos M.R., García-Álvarez O., Maroto-Morales A., Montoro V., Garde J.J. 2020. Sperm cryodamage in ruminants: Understanding the molecular changes induced by the cryopreservation process to optimize sperm quality. Int. Journal Mol. Sci. 21 (8), 2781. https://doi.org/10.3390/ijms21082781
Supplementary files
