New Materials Based on Collagen and Taxifolin Derivatives: Production and Properties
- 作者: Shatalin Y.V.1, Kobyakova M.I.1,2, Shubina V.S.1
-
隶属关系:
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences
- Research Institute of Clinical and Experimental Lymрhology — Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences
- 期: 卷 41, 编号 1 (2024)
- 页面: 82-92
- 栏目: Articles
- URL: https://journal-vniispk.ru/0233-4755/article/view/255511
- DOI: https://doi.org/10.31857/S0233475524010062
- EDN: https://elibrary.ru/zlbkxh
- ID: 255511
如何引用文章
详细
In this work, the properties of gel materials based on collagen and derivatives of taxifolin, pentaglutarate of taxifolin, and conjugate of taxifolin with glyoxylic acid were studied. It was shown that the increase in the proportion of the polyphenols in a gel led to the decrease in the rate of degradation of the materials. The materials had no negative impact on the viability of NIH/3T3 cells. The cells attached to the surface of the materials. Moreover, it was shown that they spread to the surface of the material containing pentaglutarate of taxifolin. It was also found that fibroblast migrated throughout the materials. An increase in the proportion of conjugate of taxifolin with glyoxylic acid in a material led to a decrease in cell migration throughout the material, whereas an increase in the proportion of pentaglutarate of taxifolin in a material led to a significant increase in cell migration throughout the material. The obtained data suggest that new materials for regenerative medicine can be derived from collagen and taxifolin derivatives.
全文:

作者简介
Yu. Shatalin
Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences
编辑信件的主要联系方式.
Email: shubinavictoria@yandex.ru
俄罗斯联邦, Pushchino, 142290
M. Kobyakova
Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences; Research Institute of Clinical and Experimental Lymрhology — Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences
Email: shubinavictoria@yandex.ru
俄罗斯联邦, Pushchino, 142290; Novosibirsk, 630060
V. Shubina
Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences
Email: shubinavictoria@yandex.ru
俄罗斯联邦, Pushchino, 142290
参考
- WHO Burns Available online: https://www.who.int/ru/news-room/fact-sheets/detail/burns
- Shi C., Wang C., Liu H., Li Q., Li R., Zhang Y., Liu Y., Shao Y., Wang J. 2020. Selection of appropriate wound dressing for various wounds. Front. Bioeng. Biotechnol. 8, 182. https://doi.org/10.3389/fbioe.2020.00182
- Rowan M. P., Cancio L.C., Elster E.A., Burmeister D.M., Rose L.F., Natesan S., Chan R.K., Christy R.J., Chung K.K. 2015. Burn wound healing and treatment: review and advancements. Crit Care. 19, 243. https://doi.org/10.1186/s13054–015–0961–2
- Chattopadhyay S., Raines R.T. 2014. Collagen‐based biomaterials for wound healing. Biopolymers. 101 (8), 821–833. https://doi.org/10.1002/bip.22486
- Ермолов А. С., Смирнов С.В., Карасев Н.А., Курилин Б.Л., Кислухина Е.В., Киселевская-Бабинина И.В., Васильев В.А. 2016. Анализ основных показателей работы Московского городского ожогового центра после модернизации. Журнал им. Н.В. Склифосовского «Неотложная медицинская помощь». (1), 60–62.
- Fleck C. A., Simman R. 2010. Modern collagen wound dressings: Function and purpose. J. Am. Coll. Certif. Wound Spec. 2 (3), 50–54. https://doi.org/10.1016/j.jcws.2010.12.003
- Liu R., Dai L., Si C., Zeng Z. 2018. Antibacterial and hemostatic hydrogel via nanocomposite from cellulose nanofibers. Carbohydr. Polym. 195, 63–70. https://doi.org/10.1016/j.carbpol.2018.04.085
- Adhirajan N., Shanmugasundaram N., Shanmuganathan S., Babu M. 2010. Collagen-based wound dressing for doxycycline delivery: In-vivo evaluation in an infected excisional wound model in rats. J. Pharm. Pharmacol. 61 (12), 1617–1623. https://doi.org/10.1211/jpp.61.12.0005
- Jana P., Mitra T., Selvaraj T.K.R., Gnanamani A., Kundu P.P. 2016. Preparation of guar gum scaffold film grafted with ethylenediamine and fish scale collagen, cross-linked with ceftazidime for wound healing application. Carbohydr. Polym. 153, 573–581. https://doi.org/10.1016/j.carbpol.2016.07.053
- Simões D., Miguel S.P., Ribeiro M.P., Coutinho P., Mendonça A.G., Correia I.J. 2018. Recent advances on antimicrobial wound dressing: A review. Eur. J. Pharm. Biopharm. 127, 130–141. https://doi.org/10.1016/j.ejpb.2018.02.022
- Gomathi K., Gopinath D., Rafiuddin Ahmed M., Jayakumar R. 2003. Quercetin incorporated collagen matrices for dermal wound healing processes in rat. Biomaterials. 24 (16), 2767–2772. https://doi.org/10.1016/S0142–9612(03)00059–0
- Gopinath D., Ahmed M.R., Gomathi K., Chitra K., Sehgal P.K., Jayakumar R. 2004. Dermal wound healing processes with curcumin incorporated collagen films. Biomaterials. 25 (10), 1911–1917. https://doi.org/10.1016/S0142–9612(03)00625–2
- Kim H., Kawazoe T., Han D.-W., Matsumara K., Suzuki S., Tsutsumi S., Hyon S.-H. 2008. Enhanced wound healing by an epigallocatechin gallate-incorporated collagen sponge in diabetic mice: Wound healing by EGCG-incorporated collagen sponge. Wound Repair Regen. 16 (5), 714–720. https://doi.org/10.1111/j.1524–475X.2008.00422.x
- Chak V., Kumar D., Visht S. 2013. A review on collagen based drug delivery systems. Int. J. Pharm. Teach. Pract. 4 (4), 811–820.
- Hwang J., Sullivan M.O., Kiick K.L. 2020. Targeted drug delivery via the use of ECM-mimetic materials. Front. Bioeng. Biotechnol. 8, 69. https://doi.org/10.3389/fbioe.2020.00069
- Terzopoulou Z., Michopoulou A., Palamidi A., Koliakou E., Bikiaris D. 2020. Preparation and evaluation of collagen-based patches as curcumin carriers. Polymers. 12 (10), 2393. https://doi.org/10.3390/polym12102393
- Oryan A., Kamali A., Moshiri A., Baharvand H., Daemi H. 2018. Chemical crosslinking of biopolymeric scaffolds: Current knowledge and future directions of crosslinked engineered bone scaffolds. Int. J. Biol. Macromol. 107 (Pt A), 678–688. https://doi.org/10.1016/j.ijbiomac.2017.08.184
- Gu L., Shan T., Ma Y., Tay F.R., Niu L. 2019. Novel biomedical applications of crosslinked collagen. Trends Biotechnol. 37 (5), 464–491. https://doi.org/10.1016/j.tibtech.2018.10.007
- Choi Y., Kim H.-J., Min K.-S. 2016. Effects of proanthocyanidin, a crosslinking agent, on physical and biological properties of collagen hydrogel scaffold. Restor. Dent. Endod. 41 (4), 296–303. https://doi.org/10.5395/rde.2016.41.4.296
- Gough J. E., Scotchford C.A., Downes S. 2002. Cytotoxicity of glutaraldehyde crosslinked collagen/poly(vinyl alcohol) films by the mechanism of apoptosis. J. Biomed. Mater. Res. 61 (1), 121–130. https://doi.org/10.1002/jbm.10145
- Reddy N., Reddy R., Jiang Q. 2015. Crosslinking biopolymers for biomedical applications. Trends Biotechnol. 33 (6), 362–369. https://doi.org/10.1016/j.tibtech.2015.03.008
- Wang X., Ma B., Chang J. 2015. Preparation of decellularized vascular matrix by co-crosslinking of procyanidins and glutaraldehyde. Biomed. Mater. Eng. 26 (1–2), 19–30. https://doi.org/10.3233/BME-151548
- Huang G. P., Shanmugasundaram S., Masih P., Pandya D., Amara S., Collins G., Arinzeh T.L. 2015. An investigation of common crosslinking agents on the stability of electrospun collagen scaffolds: An investigation of common crosslinking agents. J. Biomed. Mater. Res. A. 103 (2), 762–771. https://doi.org/10.1002/jbm.a.35222
- Bax D. V., Davidenko N., Gullberg D., Hamaia S.W., Farndale R.W., Best S.M., Cameron R.E. 2017. Fundamental insight into the effect of carbodiimide crosslinking on cellular recognition of collagen-based scaffolds. Acta Biomater. 49, 218–234. https://doi.org/10.1016/j.actbio.2016.11.059
- Shavandi A., Bekhit A.E.-D.A., Saeedi P., Izadifar Z., Bekhit A.A., Khademhosseini A. 2018. Polyphenol uses in biomaterials engineering. Biomaterials. 167, 91–106. https://doi.org/10.1016/j.biomaterials.2018.03.018
- Manjari M. S., Aaron K.P., Muralidharan C., Rose C. 2020. Highly biocompatible novel polyphenol cross-linked collagen scaffold for potential tissue engineering applications. React. Funct. Polym. 153, 104630. https://doi.org/10.1016/j.reactfunctpolym.2020.104630
- Zhang X., Li Z., Yang P., Duan G., Liu X., Gu Z., Li Y. 2021. Polyphenol scaffolds in tissue engineering. Mater. Horiz. 8, 145–167. https://doi.org/10.1039/D0MH01317J
- Kaczmarek B. 2020. Tannic acid with antiviral and antibacterial activity as a promising component of biomaterials — A minireview. Materials. 13 (14), 3224. https://doi.org/10.3390/ma13143224
- Kaczmarek B., Mazur O. 2020. Collagen-based materials modified by phenolic acids — A review. Materials. 13 (16), 3641. https://doi.org/10.3390/ma13163641
- Schlebusch H., Kern D. 1972. Stabilization of collagen by polyphenols. Angiologica. 9 (3–6), 248–252. https://doi.org/10.1159/000157937
- Тараховский Ю. С., Селезнева И.И., Васильева Н.А., Егорочкин М.А., Ким Ю.А. 2007. Ускорение фибриллообразования и температурная стабилизация фибрилл коллагена в присутствии таксифолина (дигидрокверцетина). Бюлл. эксперим. биол. и мед. 144 (12), 640–643. https://doi.org/10.1007/s10517–007–0433-z
- Madhan B., Subramanian V., Rao J.R., Nair B.U., Ramasami T. 2005. Stabilization of collagen using plant polyphenol: role of catechin. Int. J. Biol. Macromol. 37 (1–2), 47–53. https://doi.org/10.1016/j.ijbiomac.2005.08.005
- Han B., Jaurequi J., Tang B.W., Nimni M.E. 2003. Proanthocyanidin: A natural crosslinking reagent for stabilizing collagen matrices. J. Biomed. Mater. Res. 65A (1), 118–124. https://doi.org/10.1002/jbm.a.10460
- Greco K. V., Francis L., Huang H., Ploeg R., Boccaccini A.R., Ansari T. 2018. Is quercetin an alternative natural crosslinking agent to genipin for long‐term dermal scaffolds implantation? J. Tissue Eng. Regen. Med. 12 (3), e1716-e1724. https://doi.org/10.1002/term.2338
- He L., Mu C., Shi J., Zhang Q., Shi B., Lin W. 2011. Modification of collagen with a natural cross-linker, procyanidin. Int. J. Biol. Macromol. 48 (2), 354–359, https://doi.org/10.1016/j.ijbiomac.2010.12.012
- Pinheiro A., Cooley A., Liao J., Prabhu R., Elder S. 2016. Comparison of natural crosslinking agents for the stabilization of xenogenic articular cartilage. J. Orthop. Res. 34 (6), 1037–1046. https://doi.org/10.1002/jor.23121
- Scialla S., Gullotta F., Izzo D., Palazzo B., Scalera F., Martin I., Sannino A., Gervaso F. 2022. Genipin‐crosslinked collagen scaffolds inducing chondrogenesis: A mechanical and biological characterization. J. Biomed. Mater. Res. A. 110 (7), 1372–1385. https://doi.org/10.1002/jbm.a.37379
- Du A., Liu D., Zhang W., Wang X., Chen S. 2022. Genipin-crosslinked decellularized scaffold induces regeneration of defective rat kidneys. J. Biomater. Appl. 37 (3), 415–428. https://doi.org/10.1177/08853282221104287
- Isali I., Mclellan P., Wong T.R., Cingireddi S., Jain M., Anderson J.M., Hijaz A., Akkus O. 2022. In vivo delivery of M0, M1, and M2 macrophage subtypes via genipin-crosslinked collagen biotextile. Tissue Eng. Part A. 28 (15–16), 672–684. https://doi.org/10.1089/ten.TEA.2021.0203
- Нащекина Ю. А., Луконина О.А., Михайлова Н.А. 2020. Химические сшивающие агенты для коллагена: механизмы взаимодействия и перспективность применения в регенеративной медицине. Цитология. 62 (7), 459–472. https://doi.org/10.31857/S0041377120070044
- Chen C., Yang H., Yang X., Ma Q. 2022. Tannic acid: A crosslinker leading to versatile functional polymeric networks: A review. RSC Adv. 12 (13), 7689–7711, https://doi.org/10.1039/D1RA07657D
- Shevelev A. B., La Porta N., Isakova E.P., Martens S., Biryukova Y.K., Belous A.S., Sivokhin D.A., Trubnikova E.V., Zylkova M.V., Belyakova A.V., Smirnova M.S., Deryabina Yu.I. 2020. In vivo antimicrobial and wound-healing activity of resveratrol, dihydroquercetin, and dihydromyricetin against Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans. Pathogens. 9 (4), 296. https://doi.org/10.3390/pathogens9040296
- Carvalho M. T.B., Araújo-Filho H.G., Barreto A.S., Quintans-Júnior L.J., Quintans J.S.S., Barreto R.S.S. 2021. Wound healing properties of flavonoids: A systematic review highlighting the mechanisms of action. Phytomedicine. 90, 153636. https://doi.org/10.1016/j.phymed.2021.153636
- Nguyen V.-L., Truong C.-T., Nguyen B.C.Q., Vo T.-N.V., Dao T.-T., Nguyen V.-D., Trinh D.-T.T., Huynh H.K., Bui C.-B. 2017. Anti-inflammatory and wound healing activities of calophyllolide isolated from Calophyllum inophyllum Linn. PLoS One. 12 (10), e0185674. https://doi.org/10.1371/journal.pone.0185674
- Bhaskar Rao A., Ernala P., Deepthi Seelam S., Vennapusa H., Sistla R., Kuncha M., Surekha Mullapudi V., Rao Yerramilli S. 2015. Wound healing: A new perspective on glucosylated tetrahydrocurcumin. Drug Des. Devel. Ther. 9, 3579–3588. https://doi.org/10.2147/DDDT.S85041
- Yeh C.-J., Chen C.-C., Leu Y.-L., Lin M.-W., Chiu M.-M., Wang S.-H. 2017. The effects of artocarpin on wound healing: In vitro and in vivo studies. Sci. Rep. 7, 15599. https://doi.org/10.1038/s41598–017–15876–7
- Шубина В. С., Шаталин Ю.В. 2012. Влияние липосомных препаратов на основе комплексов таксифолина с металлами переменной валентности на регенерацию кожи при химическом ожоге. Цитология. 54 (3), 251–260.
- Ang L., Darwis Y., Koh R., Gah Leong K., Yew M., Por L., Yam M. 2019. Wound healing property of curcuminoids as a microcapsule-incorporated cream. Pharmaceutics. 11 (5), 205. https://doi.org/10.3390/pharmaceutics11050205
- Шубина В. С., Шаталин Ю.В. 2012. Регенерация кожи после химического ожога в присутствии препаратов на основе производных таксифолина. Клеточные технологии в биологии и медицине. 3, 160–166.
- Shubina V.S., Shatalin Y.V. 2017. Antioxidant and iron-chelating properties of taxifolin and its condensation product with glyoxylic acid. J. Food Sci. Technol. 54 (6), 1467–1475. https://doi.org/10.1007/s13197–017–2573–0
- Shubina V. S., Kozina V.I., Shatalin Yu.V. 2021. Comparison of antioxidant properties of a conjugate of taxifolin with glyoxylic acid and selected flavonoids. Antioxidants (Basel). 10 (8), 1262. https://doi.org/10.3390/antiox10081262
- Шаталин Ю. В., Шубина В.С. 2015. Материал на основе коллагена и таксифолина. Биофизика. 60 (3), 583–588.
- Шаталин Ю. В., Шубина В.С. 2019. Железосвязывающая и железовосстанавливающая способность материала, полученного на основе коллагена и таксифолина (дигидрокверцетина), в физиологических и патофизиологических условиях. Хим.-фарм. журн. 53 (2), 52–56. https://doi.org/10.30906/0023–1134–2019–53–2–52–56
- Davidenko N., Hamaia S., Bax D.V., Malcor J.-D., Schuster C.F., Gullberg D., Farndale R.W., Best S.M., Cameron R.E. 2017. Selecting the correct cellular model for assessing of the biological response of collagen-based biomaterials. Acta Biomater. 65, 88–101. https://doi.org/10.1016/j.actbio.2017.10.035
- Majid Q. A., Fricker A.T.R., Gregory D.A., Davidenko N., Cruz O.H., Jabbour R.J., Owen T.J., Basnett P., Lukasiewicz B., Stevens M., Best S., Cameron R., Sinha S., Harding S.E., Roy I. 2020. Natural biomaterials for cardiac tissue engineering: A highly biocompatible solution. Front Cardiovasc Med. 7, 554597. https://doi.org/10.3389/fcvm.2020.554597
补充文件
