The role of nitric oxide and hydrogen sulfide in the regulation of pro- and antiapoptotic gene expression in central and peripheral nervous system injuries

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Injuries to the central and peripheral nervous systems are accompanied by complex cellular and molecular processes, including neuroinflammation, oxidative stress, and programmed cell death. Nitric oxide (NO) and hydrogen sulfide (H₂S) play pivotal roles in these processes, exhibiting dual effects. Apoptosis is a key mechanism involved in the death of neurons and glial cells following neurotrauma. NO and H₂S can regulate the expression of anti- and pro-apoptotic genes either through direct modification of DNA and RNA or via more complex epigenetic mechanisms involving activation or inhibition of transcription factors. This review provides a detailed overview of NO- and H₂S-dependent signaling pathways regulating the expression of anti- and pro-apoptotic genes in various types of neurotrauma and discusses the dual effects of these gasotransmitters in pharmacological modulation.

About the authors

S. V. Rodkin

Research Laboratory “Medical Digital Imaging Based on a Basic Model”, Department of Bioengineering, Faculty of Bioengineering and Veterinary Medicine, Don State Technical University

Author for correspondence.
Email: rodkin_stas@mail.ru
Rostov-on-Don, 344000 Russia

References

  1. O'Leary S., Sherwood R., Gundlach C., Bah M., Azam F., Robledo A., Tom R., Price A., Jenkins A., Darko K., Barrie U., Braga B.P., Aoun S.G., Whittemore B.A., Totimeh T. 2024. Global neurotrauma: a systematic review and summary of the current state of registries around the world. J. Clin. Neurosci. 129, 110838. https://doi.org/10.1016/j.jocn.2024.110838
  2. Woodburn S.C., Bollinger J.L., Wohleb E.S. 2021. The semantics of microglia activation: neuroinflammation, homeostasis, and stress. J. Neuroinflammation. 18, 258. https://doi.org/10.1186/s12974-021-02309-6
  3. Plesnila N., von Baumgarten L., Retiounskaia M., Engel D., Ardeshiri A., Zimmermann R., Hoffmann F., Landshamer S., Wagner E., Culmsee C. 2007. Delayed neuronal death after brain trauma involves p53-dependent inhibition of NF-κB transcriptional activity. Cell Death Differ. 14, 1529–1541. https://doi.org/10.1038/sj.cdd.4402159
  4. Rodkin S.V., Dzreyan V.A., Demyanenko S.V., Uzdensky A.B. 2021. The role of p53-dependent signaling pathways in survival and death of neurons and glial cells after peripheral nerve injury. Biochem. (Moscow), Suppl. Ser. A Membr. Cell Biol. 15, 334–347. https://doi.org/10.1134/S199074782106009X
  5. Zhang J., Zhang S., Shan H., Zhang M. 2020. Biologic effect of hydrogen sulfide and its role in traumatic brain injury. Oxid. Med. Cell. Longev. 2020, 7301615. https://doi.org/10.1155/2020/7301615
  6. Rodkin S.V., Nwosu C.D. 2023. Role of nitric oxide and hydrogen sulfide in neuronal and glial cell death in neurodegenerative processes. Biochem. (Moscow), Suppl. Ser. A Membr. Cell Biol. 17, 223–242. https://doi.org/10.1134/S1990747823050069
  7. Bruce King S. 2013. Potential biological chemistry of hydrogen sulfide (H2S) with the nitrogen oxides. Free Radic. Biol. Med. 55, 1–7. https://doi.org/10.1016/j.freeradbiomed.2012.11.005
  8. Гусакова С.В., Ковалев И.В., Смаглий Л.В., Бирулина Ю.Г., Носарев А.В., Петрова И.В., Медведев М.А., Орлов С.Н., Реутов В.П. 2015. Газовая сигнализация в клетках млекопитающих. Успехи физиологических наук. 46, 53–73.
  9. Яковлева О.В., Шафигуллин М.У., Ситдикова Г.Ф. 2013. Роль оксида азота в регуляции секреции медиатора и процессов экзо- и эндоцитоза синаптических везикул в двигательном нервном окончании мыши. Нейрохимия. 30, 109–116. https://doi.org/10.7868/S1027813313020106
  10. Вараксин А.A., Пущина Е.В. 2012. Значение сероводорода в регуляции функций органов. Тихоокеанский медицинский журнал. 2, 27–36.
  11. Яковлев А.В., Ситдикова Г.Ф. 2014. Физиологическая роль сероводорода в нервной системе. Гены и Клетки. 9, 34–40.
  12. Calabrese V., Mancuso C., Calvani M., Rizzarelli E., Butterfield D.A., Giuffrida Stella A.M. 2007. Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity. Nat. Rev. Neurosci. 8, 766–775. https://doi.org/10.1038/nrn2214
  13. Vasudevan D., Bovee R.C., Thomas D.D. 2016. Nitric oxide, the new architect of epigenetic landscapes. Nitric Oxide. 59, 54–62. https://doi.org/10.1016/j.niox.2016.08.002
  14. Dogaru B.G., Munteanu C. 2023. The role of hydrogen sulfide (H2S) in epigenetic regulation of neurodegenerative diseases: a systematic review. Int. J. Mol. Sci. 24, 12555. https://doi.org/10.3390/ijms241612555
  15. Lawen A. 2003. Apoptosis – an introduction. BioEssays. 25, 888–896. https://doi.org/10.1002/bies.10329
  16. Lossi L. 2022. The concept of intrinsic versus extrinsic apoptosis. Biochem. J. 479, 357–384. https://doi.org/10.1042/BCJ20210854
  17. Львова О.А., Гусева В.В., Чегодавев Д.А. 2009. Апоптоз: молекулярная биология и его роль в патологии нервной системы (литературный обзор). Нейрохирургия и неврология детского возраста. 3–4, 87–99.
  18. Gopisetty G., Ramachandran K., Singal R. 2006. DNA methylation and apoptosis. Mol. Immunol. 43, 1729–1740. https://doi.org/10.1016/j.molimm.2005.11.010
  19. Subramanian S., Steer C.J. 2010. MicroRNAs as gatekeepers of apoptosis. J. Cell. Physiol. 223, 289–298. https://doi.org/10.1002/jcp.22066
  20. Bianchi M.E., Manfredi A. 2004. Chromatin and cell death. Biochim. Biophys. Acta – Gene Struct. Expr. 1677, 181–186. https://doi.org/10.1016/j.bbaexp.2003.10.017
  21. Manoochehri M., Borhani N., Karbasi A., Koochaki A., Kazemi B. 2016. Promoter hypermethylation and downregulation of the FAS gene may be involved in colorectal carcinogenesis. Oncol. Lett. 12, 285–290. https://doi.org/10.3892/ol.2016.4578
  22. Hervouet E., Cheray M., Vallette F., Cartron P.F. 2013. DNA methylation and apoptosis resistance in cancer cells. Cells. 2, 545–573. https://doi.org/10.3390/cells2030545
  23. Morrison B.E., Majdzadeh N., D’Mello S.R. 2007. Histone deacetylases: Focus on the nervous system. Cell. Mol. Life Sci. 64, 2258–2269. https://doi.org/10.1007/s00018-007-7035-9
  24. Payne C.T., Tabassum S., Wu S., Hu H., Gusdon A.M., Choi H.A., Ren X.S. 2023. Role of microRNA-34a in blood–brain barrier permeability and mitochondrial function in ischemic stroke. Front. Cell. Neurosci. 17, 1278334. https://doi.org/10.3389/fncel.2023.1278334
  25. Wu Q., Yi X. 2018. Down-regulation of long noncoding RNA MALAT1 protects hippocampal neurons against excessive autophagy and apoptosis via the PI3K/Akt signaling pathway in rats with epilepsy. J. Mol. Neurosci. 65, 234–245. https://doi.org/10.1007/s12031-018-1093-3
  26. Khan M., Sekhon B., Giri S., Jatana M., Gilg A.G., Ayasolla K., Elango C., Singh A.K., Singh I. 2005. S-nitrosoglutathione reduces inflammation and protects brain against focal cerebral ischemia in a rat model of experimental stroke. J. Cereb. Blood Flow Metab. 25, 177–192. https://doi.org/10.1038/sj.jcbfm.9600012
  27. Ow Y.P., Green D.R., Hao Z., Mak T.W. 2008. Cytochrome c: Functions beyond respiration. Nat. Rev. Mol. Cell Biol. 9, 532–542. https://doi.org/10.1038/nrm2434
  28. Hogg N. 2002. The biochemistry and physiology of S-nitrosothiols. Annu. Rev. Pharmacol. Toxicol. 42, 585–600. https://doi.org/10.1146/annurev.pharmtox.42.092501.104328
  29. Rössig L., Fichtlscherer B., Breitschopf K., Haendeler J., Zeiher A.M., Mülsch A., Dimmeler S. 1999. Nitric oxide inhibits caspase-3 by s-nitrosationin vivo. J. Biol. Chem. 274, 6823–6826. https://doi.org/10.1074/jbc.274.11.6823
  30. Lee H.M., Choi J.W., Choi M.S. 2021. Role of nitric oxide and protein S-nitrosylation in ischemia-reperfusion injury. Antioxidants. 11, 57. https://doi.org/10.3390/antiox11010057
  31. Azad N., Vallyathan V., Wang L., Tantishaiyakul V., Stehlik C., Leonard S.S., Rojanasakul Y. 2006. S-nitrosylation of Bcl-2 inhibits its ubiquitin-proteasomal degradation. J. Biol. Chem. 281, 34124–3434. https://doi.org/10.1074/jbc.M602551200
  32. Pervin S., Singh R.G. 2003. Nitric-oxide-induced Bax integration into the mitochondrial membrane commits MDA-MB-468 cells to apoptosis: Essential role of Akt. Cancer Res. 67, 5470–5479
  33. Ye X., Li Y., Lv B., Qiu B., Zhang S., Peng H., Kong W., Tang C., Huang Y., Du J., Jin H. 2022. Endogenous hydrogen sulfide persulfidates caspase-3 at cysteine 163 to inhibit doxorubicin-induced cardiomyocyte apoptosis. Oxid. Med. Cell. Longev. 2022, 6153772. https://doi.org/10.1155/2022/6153772
  34. Rodkin S., Nwosu C., Raevskaya M., Khanukaev M., Bekova K., Vasilieva I., Vishnyak D., Tolmacheva A., Efremova E., Gasanov M., Tyurin A. 2023. The role of hydrogen sulfide in the localization and expression of p53 and cell death in the nervous tissue in traumatic brain injury and axotomy. Int. J. Mol. Sci. 24, 15708. https://doi.org/10.3390/ijms242115708
  35. Laval F., Wink D.A. 1994. Inhibition by nitric oxide of the repair protein, O6–DNA-methyltransferase. Carcinogenesis. 15, 443–447. https://doi.org/10.1093/carcin/15.3.443
  36. Nott A., Watson P.M., Robinson J.D., Crepaldi L., Riccio A. 2008. S-nitrosylation of histone deacetylase 2 induces chromatin remodelling in neurons. Nature. 455, 411–445. https://doi.org/10.1038/nature07238
  37. Sun Y., Li D., Su Y., Zhao H., Pang W., Zhao W., Wu S. 2020. Protective effect of hydrogen sulfide is mediated by negative regulation of epigenetic histone acetylation in Parkinson’s disease. Arch. Med. Sci. 19, 1124 –1135. https://doi.org/10.5114/aoms.2020.93121
  38. Wang B., Han S. 2018. Inhibition of inducible nitric oxide synthase attenuates deficits in synaptic plasticity and brain functions following traumatic brain injury. Cerebellum. 17, 477–484. https://doi.org/10.1007/s12311-018-0934-5
  39. Babkina I.I., Sergeeva S.P., Gorbacheva L.R. 2021. The role of NF-κB in neuroinflammation. Neurochem. J. 15, 114–128. https://doi.org/10.1134/S1819712421020045
  40. Ghosh G., Wang V.Y., Huang D., Fusco A. 2012. NF-κB regulation: Lessons from structures. Immunol. Rev. 246, 36–58. https://doi.org/10.1111/j.1600-065X.2012.01097.x
  41. Zheng C., Yin Q., Wu H. 2011. Structural studies of NF-κB signaling. Cell Res. 21, 183–195. https://doi.org/10.1038/cr.2010.171
  42. Reynaert N.L., Ckless K., Korn S.H., Vos N., Guala A.S., Wouters E.F.M., van der Vliet A., Janssen-Heininger Y.M.W. 2004. Nitric oxide represses inhibitory κB kinase through S-nitrosylation. Proc. Natl. Acad. Sci. 101, 8945–8950. https://doi.org/10.1073/pnas.0400588101
  43. Jin W., Wang H., Yan W., Zhu L., Hu Z., Ding Y., Tang K. 2009. Role of Nrf2 in protection against traumatic brain injury in mice. J. Neurotrauma. 26, 131–139. https://doi.org/10.1089/neu.2008.0655
  44. Yan W., Wang H.D., Hu Z.G., Wang Q.F., Yin H.X. 2008. Activation of Nrf2–ARE pathway in brain after traumatic brain injury. Neurosci. Lett. 431, 150–154. https://doi.org/10.1016/j.neulet.2007.11.060
  45. Guo X., Kang J., Wang Z., Wang Y., Liu M., Zhu D., Yang F., Kang X. 2022. Nrf2 signaling in the oxidative stress response after spinal cord injury. Neuroscience. 498, 311–324. https://doi.org/10.1016/j.neuroscience.2022.06.007
  46. Tang W., Chen X., Liu H., Lv Q., Zou J., Shi Y., Liu Z. 2018. Expression of Nrf2 promotes schwann cell-mediated sciatic nerve recovery in diabetic peripheral neuropathy. Cell. Physiol. Biochem. 46, 1879–1894. https://doi.org/10.1159/000489373
  47. Dhakshinamoorthy S., Porter A.G. 2004. Nitric oxide-induced transcriptional up-regulation of protective genes by Nrf2 via the antioxidant response element counteracts apoptosis of neuroblastoma cells. J. Biol. Chem. 279, 20096–20107. https://doi.org/10.1074/jbc.M312492200
  48. Zhang M., An C., Gao Y., Leak R.K., Chen J., Zhang F. 2013. Emerging roles of Nrf2 and phase II antioxidant enzymes in neuroprotection. Prog. Neurobiol. 100, 30–47. https://doi.org/10.1016/j.pneurobio.2012.09.003
  49. Wang B., Zhu X., Kim Y., Li J., Huang S., Saleem S., Li C., Xu Y., Dore S., Cao W. 2012. Histone deacetylase inhibition activates transcription factor Nrf2 and protects against cerebral ischemic damage. Free Radic. Biol. Med. 52, 928–936. https://doi.org/10.1016/j.freeradbiomed.2011.12.006
  50. Wu C., Zhang H., Hong H., Chen C., Chen J., Zhang J., Xue P., Jiang J., Cui Z. 2022. E3 ubiquitin ligase Triad1 promotes neuronal apoptosis by regulating the p53-caspase3 pathway after spinal cord injury. Somatosens. Mot. Res. 39, 21–28. https://doi.org/10.1080/08990220.2021.1986385
  51. Shinozaki S., Chang K., Sakai M., Shimizu N., Yamada M., Tanaka T., Nakazawa H., Ichinose F., Yamada Y., Ishigami A., Ito H., Ouchi Y., Starr M.E., Saito H., Shimokado K., Stamler J.S., Kaneki M. 2014. Inflammatory stimuli induce inhibitory S-nitrosylation of the deacetylase SIRT1 to increase acetylation and activation of p53 and p65. Sci. Signal. 7, ra106. https://doi.org/10.1126/scisignal.2005375
  52. Subhasree N., Jiangjiang Q., Kalkunte S., Minghai W., Ruiwen Z. 2013. The MDM2-p53 pathway revisited. J. Biomed. Res. 27, 254. https://doi.org/10.7555/JBR.27.20130030
  53. de Rozieres S., Maya R., Oren M., Lozano G. 2000. The loss of mdm2 induces p53 mediated apoptosis. Oncogene. 19, 1691–1697. https://doi.org/10.1038/sj.onc.1203468
  54. Joshi Y., Sória M., Quadrato G., Inak G., Zhou L., Hervera A., Rathore K.I., Elnaggar M., Cucchiarini M., Marine J.C., Puttagunta R., Di Giovanni S. 2015. The MDM4/MDM2-p53-IGF1 axis controls axonal regeneration, sprouting and functional recovery after CNS injury. Brain. 138, 1843–1862. https://doi.org/10.1093/brain/awv125
  55. Yang L.Y., Greig N.H., Tweedie D., Jung Y.J., Chiang Y.H., Hoffer B.J., Miller J.P., Chang K.H., Wang J.Y. 2020. The p53 inactivators pifithrin-μ and pifithrin-α mitigate TBI-induced neuronal damage through regulation of oxidative stress, neuroinflammation, autophagy and mitophagy. Exp. Neurol. 324, 113135. https://doi.org/10.1016/j.expneurol.2019.113135
  56. Sen N., Hara M.R., Kornberg M.D., Cascio M.B., Bae B.I., Shahani N., Thomas B., Dawson T.M., Dawson V.L., Snyder S.H., Sawa A. 2008. Nitric oxide-induced nuclear GAPDH activates p300/CBP and mediates apoptosis. Nat. Cell Biol. 10, 866–873. https://doi.org/10.1038/ncb1747
  57. Rodkin S., Dzreyan V., Bibov M., Ermakov A., Derezina T., Kirichenko E. 2022. NO-dependent mechanisms of p53 expression and cell death in rat’s dorsal root ganglia after sciatic-nerve transection. Biomedicines. 10, 1664. https://doi.org/10.3390/biomedicines10071664
  58. Ding J.Y., Kreipke C.W., Speirs S.L., Schafer P., Schafer S., Rafols J.A. 2009. Hypoxia-inducible factor-1α signaling in aquaporin upregulation after traumatic brain injury. Neurosci. Lett. 453, 68–72. https://doi.org/10.1016/j.neulet.2009.01.077
  59. Li A., Sun X., Ni Y., Chen X., Guo A. 2013. HIF-1α Involves in neuronal apoptosis after traumatic brain injury in adult rats. J. Mol. Neurosci. 51, 1052–1062. https://doi.org/10.1007/s12031-013-0084-7
  60. Pollard P., Yang M., Su H., Soga T., Kranc K. 2014. Prolyl hydroxylase domain enzymes: important regulators of cancer metabolism. Hypoxia. 2, 127–142. https://doi.org/10.2147/HP.S47968
  61. Khan M., Dhammu T.S., Baarine M., Kim J., Paintlia M.K., Singh I., Singh A.K. 2018. GSNO promotes functional recovery in experimental TBI by stabilizing HIF-1α. Behav. Brain Res. 340, 63–70. https://doi.org/10.1016/j.bbr.2016.10.037
  62. Sogawa K., Numayama-Tsuruta K., Ema M., Abe M., Abe H., Fujii-Kuriyama Y. 1998. Inhibition of hypoxia-inducible factor 1 activity by nitric oxide donors in hypoxia. Proc. Natl. Acad. Sci. 95, 7368–7373. https://doi.org/10.1073/pnas.95.13.7368
  63. Tabuchi A., Sano K., Oh E., Tsuchiya T., Tsuda M. 1994. Modulation of AP-1 activity by nitric oxide (NO) in vitro: NO-mediated modulation of AP-1. FEBS Lett. 351, 123–127. https://doi.org/10.1016/0014-5793(94)00839-6
  64. Park H.S., Mo J.S., Choi E.J. 2006. Nitric oxide inhibits an interaction between JNK1 and c-Jun through nitrosylation. Biochem. Biophys. Res. Commun. 351, 281–286. https://doi.org/10.1016/j.bbrc.2006.10.034
  65. Pei D., Song Y., Yu H., Hu W., Du Y., Zhang G. 2008. Exogenous nitric oxide negatively regulates c-Jun N-terminal kinase activation via inhibiting endogenous NO-induced S-nitrosylation during cerebral ischemia and reperfusion in rat hippocampus. J. Neurochem. 106, 1952–1963. https://doi.org/10.1111/j.1471-4159.2008.05531.x
  66. Beni S.M., Kohen R., Reiter R.J., Tan D., Shohami E. 2004. Melatonin-induced neuroprotection after closed head injury is associated with increased brain antioxidants and attenuated late-phase activation of NF-κB and AP-1. FASEB J. 18, 149–151. https://doi.org/10.1096/fj.03-0323fje
  67. Ding Y., Luan W., Shen X., Wang Z., Cao Y. 2024. E2F1 mediates traumatic brain injury and regulates bdnf-as to promote the progression of Alzheimer’s disease. Neurotox. Res. 42, 17. https://doi.org/10.1007/s12640-024-00695-2
  68. Cui X., Zhang J., Ma P., Myers D.E., Goldberg I.G., Sittler K.J., Barb J.J., Munson P.J., Cintron Adel P., McCoy J.P., Wang S., Danner R.L. 2005. cGMP-independent nitric oxide signaling and regulation of the cell cycle. BMC Genomics. 6, 151. https://doi.org/10.1186/1471-2164-6-151
  69. Oliva A.A., Kang Y., Sanchez-Molano J., Furones C., Atkins C.M. 2012. STAT3 signaling after traumatic brain injury. J. Neurochem. 120, 710–720. https://doi.org/10.1111/j.1471-4159.2011.07610.x
  70. Kim J., Won J.S., Singh A.K., Sharma A.K., Singh I. 2014. STAT3 regulation by S-nitrosylation: implication for inflammatory disease. Antioxid. Redox Signal. 20, 2514–2527. https://doi.org/10.1089/ars.2013.5223
  71. Li L., Zhang J., Jin B., Block E.R., Patel J.M. 2007. Nitric oxide upregulation of caspase-8 mRNA expression in lung endothelial cells: Role of JAK2/STAT-1 signaling. Mol. Cell. Biochem. 305, 71–77. https://doi.org/10.1007/s11010-007-9529-z
  72. Marinkovic T., Marinkovic D. 2021. Obscure involvement of MYC in neurodegenerative diseases and neuronal repair. Mol. Neurobiol. 58, 4169–4177. https://doi.org/10.1007/s12035-021-02406-w
  73. Raman D., Chong S.J.F., Iskandar K., Hirpara J.L., Pervaiz S. 2020. Peroxynitrite promotes serine-62 phosphorylation-dependent stabilization of the oncoprotein c-Myc. Redox Biol. 34, 101587. https://doi.org/10.1016/j.redox.2020.101587
  74. Morrish F., Hockenbery D. 2014. MYC and mitochondrial biogenesis. Cold Spring Harb. Perspect. Med. 4, a014225. https://doi.org/10.1101/cshperspect.a014225
  75. Liu X.K., Abernethy D.R., Andrawis N.S. 1998. Nitric oxide inhibits Oct-1 DNA binding activity in cultured vascular smooth muscle cells. Life Sci. 62, 739–749. https://doi.org/10.1016/S0024-3205(97)01172-7
  76. Zhang X., Vlkolinsky R., Wu C., Dolatabadi N., Scott H., Prikhodko O., Zhang A., Blanco M., Lang N., Piña-Crespo J., Nakamura T., Roberto M., Lipton S.A. 2025. S-Nitrosylation of CRTC1 in Alzheimer’s disease impairs CREB-dependent gene expression induced by neuronal activity. Proc. Natl. Acad. Sci. 122, e2418179122. https://doi.org/10.1073/pnas.2418179122
  77. Kanao T., Sawada T., Davies S.A., Ichinose H., Hasegawa K., Takahashi R., Hattori N., Imai Y. 2012. The nitric oxide-cyclic GMP pathway regulates FoxO and alters dopaminergic neuron survival in Drosophila. PLoS One. 7, e30958. https://doi.org/10.1371/journal.pone.0030958
  78. Corsello T., Komaravelli N., Casola A. 2018. Role of hydrogen sulfide in NRF2- and sirtuin-dependent maintenance of cellular redox balance. Antioxidants. 7, 129. https://doi.org/10.3390/antiox7100129
  79. Gupta R., Sahu M., Tripathi R., Ambasta R.K., Kumar P. 2022. Protein S-sulfhydration: Unraveling the prospective of hydrogen sulfide in the brain, vasculature and neurological manifestations. Ageing Res. Rev. 76, 101579. https://doi.org/10.1016/j.arr.2022.101579
  80. Gong Q.H., Wang Q., Pan L.L., Liu X.H., Huang H., Zhu Y.Z. 2010. Hydrogen sulfide attenuates lipopolysaccharide-induced cognitive impairment: A pro-inflammatory pathway in rats. Pharmacol. Biochem. Behav. 96, 52–58. https://doi.org/10.1016/j.pbb.2010.04.006
  81. Chen W.L., Niu Y.Y., Jiang W.Z., Tang H.L., Zhang C., Xia Q.M., Tang X.Q. 2015. Neuroprotective effects of hydrogen sulfide and the underlying signaling pathways. Rev. Neurosci. 26, 129–142. https://doi.org/10.1515/revneuro-2014-0051
  82. Sun X., Wu S., Mao C., Qu Y., Xu Z., Xie Y., Jiang D., Song Y. 2024. Therapeutic potential of hydrogen sulfide in ischemia and reperfusion injury. Biomolecules. 14, 740. https://doi.org/10.3390/biom14070740
  83. Cao L., Cao X., Zhou Y., Nagpure B.V., Wu Z.Y., Hu L.F., Yang Y., Sethi G., Moore P.K., Bian J.S. 2018. Hydrogen sulfide inhibits ATP-induced neuroinflammation and Aβ1–42 synthesis by suppressing the activation of STAT3 and cathepsin S. Brain. Behav. Immun. 73, 603–614. https://doi.org/10.1016/j.bbi.2018.07.005
  84. Sun J., Li X., Gu X., Du H., Zhang G., Wu J., Wang F. 2021. Neuroprotective effect of hydrogen sulfide against glutamate-induced oxidative stress is mediated via the p53/glutaminase 2 pathway after traumatic brain injury. Aging (Albany. NY). 13, 7180–7189. https://doi.org/10.18632/aging.202575
  85. Calenic B., Yaegaki K., Ishkitiev N., Kumazawa Y., Imai T., Tanaka T. 2013. p53-Pathway activity and apoptosis in hydrogen sulfide-exposed stem cells separated from human gingival epithelium. J. Periodontal Res. 48, 322–330. https://doi.org/10.1111/jre.12011
  86. Di Giovanni S., Rathore K. 2012. p53-dependent pathways in neurite outgrowth and axonal regeneration. Cell Tissue Res. 349, 87–95. https://doi.org/10.1007/s00441-011-1292-5
  87. Gonzalez-Cano L., Herreros-Villanueva M., Fernandez-Alonso R., Ayuso-Sacido A., Meyer G., Garcia-Verdugo J.M., Silva A., Marques M.M., Marin M.C. 2010. p73 deficiency results in impaired self renewal and premature neuronal differentiation of mouse neural progenitors independently of p53. Cell Death Dis. 1, e109. https://doi.org/10.1038/cddis.2010.87
  88. Pearson A.G., Gray C.W., Pearson J.F., Greenwood J.M., During M.J., Dragunow M. 2003. ATF3 enhances c-Jun-mediated neurite sprouting. Mol. Brain Res. 120, 38–45. https://doi.org/10.1016/j.molbrainres.2003.09.014
  89. Luo X., Ribeiro M., Bray E.R., Lee D.H., Yungher B.J., Mehta S.T., Thakor K.A., Diaz F., Lee J.K., Moraes C.T., Bixby J.L., Lemmon V.P., Park K.K. 2016. Enhanced transcriptional activity and mitochondrial localization of STAT3 co-induce axon regrowth in the adult central nervous system. Cell Rep. 15, 398–410. https://doi.org/10.1016/j.celrep.2016.03.029
  90. Moore D.L., Goldberg J.L. 2011. Multiple transcription factor families regulate axon growth and regeneration. Dev. Neurobiol. 71, 1186–1211. https://doi.org/10.1002/dneu.20934
  91. Ko K.W., Milbrandt J., DiAntonio A. 2020. SARM1 acts downstream of neuroinflammatory and necroptotic signaling to induce axon degeneration. J. Cell Biol. 219, e201912047. https://doi.org/10.1083/jcb.201912047
  92. Dey A., Prabhudesai S., Zhang Y., Rao G., Thirugnanam K., Hossen M.N., Dwivedi S.D., Ramchandran R., Mukherjee P., Bhattacharya R. 2020. Cystathione β-synthase regulates HIF-1α stability through persulfidation of PHD2. Sci. Adv. 6, eaaz8534. https://doi.org/10.1126/sciadv.aaz8534
  93. Bir S.C., Kolluru G.K., McCarthy P., Shen X., Pardue S., Pattillo C.B., Kevil C.G. 2012. Hydrogen sulfide stimulates ischemic vascular remodeling through nitric oxide synthase and nitrite reduction activity regulating hypoxia-inducible Factor-1α and vascular endothelial growth factor–dependent angiogenesis. J. Am. Heart Assoc. 1, e004093. https://doi.org/10.1161/JAHA.112.004093
  94. Wu B., Teng H., Yang G., Wu L., Wang R. 2012. Hydrogen sulfide inhibits the translational expression of hypoxia-inducible factor-1α. Br. J. Pharmacol. 167, 1492–1505. https://doi.org/10.1111/j.1476-5381.2012.02113.x
  95. Zhang Y., Gao J., Sun W., Wen X., Xi Y., Wang Y., Wei C., Xu C., Li H. 2019. H2S restores the cardioprotective effects of ischemic post-conditioning by upregulating HB-EGF/EGFR signaling. Aging (Albany. NY). 11, 1745–1758. https://doi.org/10.18632/aging.101866
  96. Liu X., Guo H., Wang X., Jiao H., Li L., Zheng J. 2021. c-myc protects mice from ischemia stroke through elevating microRNA-200b-5p-regulated SIRT1 expression. Brain Res. Bull. 176, 76–84. https://doi.org/10.1016/j.brainresbull.2021.07.006
  97. Song K., Wang F., Li Q., Shi Y.B., Zheng H.F., Peng H., Shen H.Y., Liu C.F., Hu L.F. 2014. Hydrogen sulfide inhibits the renal fibrosis of obstructive nephropathy. Kidney Int. 85, 1318–1329. https://doi.org/10.1038/ki.2013.449
  98. Huang Y., Omorou M., Gao M., Mu C., Xu W., Xu H. 2023. Hydrogen sulfide and its donors for the treatment of cerebral ischaemia-reperfusion injury: A comprehensive review. Biomed. Pharmacother. 161, 114506. https://doi.org/10.1016/j.biopha.2023.114506
  99. Majumder S., Ren L., Pushpakumar S., Sen U. 2019. Hydrogen sulphide mitigates homocysteine-induced apoptosis and matrix remodelling in mesangial cells through Akt/FOXO1 signalling cascade. Cell. Signal. 61, 66–77. https://doi.org/10.1016/j.cellsig.2019.05.003
  100. Li X., Yu P., Yu Y., Xu T., Liu J., Cheng Y., Yang X., Cui X., Yin C., Liu Y. 2021. Hydrogen sulfide ameliorates high glucose-induced pro-inflammation factors in HT-22 cells: Involvement of SIRT1-mTOR/NF-κB signaling pathway. Int. Immunopharmacol. 95, 107545. https://doi.org/10.1016/j.intimp.2021.107545
  101. Li S., Yang G. 2015. Hydrogen sulfide maintains mitochondrial DNA replication via demethylation of TFAM. Antioxid. Redox Signal. 23, 630–642. https://doi.org/10.1089/ars.2014.6186
  102. Hu M., Zhou B., Mao H., Sheng Q., Du B., Chen J., Pang Q., Ji Y. 2016. Exogenous hydrogen sulfide postconditioning protects isolated rat hearts from ischemia/reperfusion injury through Sirt1/PGC-1α signaling pathway. Int. Heart J. 57, 477–482. https://doi.org/10.1536/ihj.15-506
  103. Hou X.O., Tu H.Y., Qian H.C., Li Q., Yang Y.P., Xu G.Q., Wang F., Liu C.F., Wang Y.L., Hu L.F. 2021. AMPK S-sulfuration contributes to H2S donors-induced AMPK phosphorylation and autophagy activation in dopaminergic cells. Neurochem. Int. 150, 105187. https://doi.org/10.1016/j.neuint.2021.105187
  104. Szabo C., Ransy C., Módis K., Andriamihaja M., Murghes B., Coletta C., Olah G., Yanagi K., Bouillaud F. 2014. Regulation of mitochondrial bioenergetic function by hydrogen sulfide. Part I. Biochemical and physiological mechanisms. Br. J. Pharmacol. 171, 2099–2122. https://doi.org/10.1111/bph.12369
  105. Huang D., Jing G., Zhang L., Chen C., Zhu S. 2021. Interplay among hydrogen sulfide, nitric oxide, reactive oxygen species, and mitochondrial DNA oxidative damage. Front. Plant Sci. 12, 701681. https://doi.org/10.3389/fpls.2021.701681
  106. Andrés C.C., Lastra J.P. de la, Juan C.A., Plou F.J., Pérez-Lebeña E. 2023. Chemical insights into oxidative and nitrative modifications of DNA. Int. J. Mol. Sci. 24, 15240. https://doi.org/10.3390/ijms242015240
  107. Serpa V., Vernal J., Lamattina L., Grotewold E., Cassia R., Terenzi H. 2007. Inhibition of AtMYB2 DNA-binding by nitric oxide involves cysteine S-nitrosylation. Biochem. Biophys. Res. Commun. 361, 1048–1053. https://doi.org/10.1016/j.bbrc.2007.07.133
  108. Kim M., Park S.C., Lee D.Y. 2021. Glycyrrhizin as a nitric oxide regulator in cancer chemotherapy. Cancers (Basel). 13, 5762. https://doi.org/10.3390/cancers13225762
  109. Shackelford R., Ozluk E., Islam M.Z., Hopper B., Meram A., Ghali G., Kevil C.G. 2021. Hydrogen sulfide and DNA repair. Redox Biol. 38, 101675. https://doi.org/10.1016/j.redox.2020.101675
  110. Yang G., Zhao K., Ju Y., Mani S., Cao Q., Puukila S., Khaper N., Wu L., Wang R. 2013. Hydrogen sulfide protects against cellular senescence via S-Sulfhydration of Keap1 and activation of Nrf2. Antioxid. Redox Signal. 18, 1906–1919. https://doi.org/10.1089/ars.2012.4645
  111. Li M., Hu W., Wang R., Li Z., Yu Y., Zhuo Y., Zhang Y., Wang Z., Qiu Y., Chen K., Ding Q., Qi W., Zhu M., Zhu Y. 2022. Sp1 S-Sulfhydration induced by hydrogen sulfide inhibits inflammation via HDAC6/MyD88/NF-κB signaling pathway in adjuvant-induced arthritis. Antioxidants. 11, 732. https://doi.org/10.3390/antiox11040732
  112. Charidemou E., Kirmizis A. 2024. A two-way relationship between histone acetylation and metabolism. Trends Biochem. Sci. 49, 1046–1062. https://doi.org/10.1016/j.tibs.2024.10.005
  113. Masuda M., Nishino H., Ohshima H. 2002. Formation of 8-nitroguanosine in cellular RNA as a biomarker of exposure to reactive nitrogen species. Chem. Biol. Interact. 139, 187–197. https://doi.org/10.1016/S0009-2797(01)00299-X
  114. Bai Y.P., Zhang J.X., Sun Q., Zhou J.P., Luo J.M., He L.F., Lin X.C., Zhu L.P., Wu W.Z., Wang Z.Y., Zhang G.G. 2018. Induction of microRNA-199 by nitric oxide in endothelial cells is required for nitrovasodilator resistance via targeting of prostaglandin I2 synthase. Circulation. 138, 397–411. https://doi.org/10.1161/CIRCULATIONAHA.117.029206
  115. Li L., Jiang H., Li Y., Guo Y. 2015. Hydrogen sulfide protects spinal cord and induces autophagy via miR-30c in a rat model of spinal cord ischemia-reperfusion injury. J. Biomed. Sci. 22, 50. https://doi.org/10.1186/s12929-015-0135-1
  116. Toldo S., Das A., Mezzaroma E., Chau V.Q., Marchetti C., Durrant D., Samidurai A., Van Tassell B.W., Yin C., Ockaili R.A., Vigneshwar N., Mukhopadhyay N.D., Kukreja R.C., Abbate A., Salloum F.N. 2014. Induction of MicroRNA-21 with exogenous hydrogen sulfide attenuates myocardial ischemic and inflammatory injury in mice. Circ. Cardiovasc. Genet. 7, 311–320. https://doi.org/10.1161/CIRCGENETICS.113.000381
  117. Liu Y., Liao S., Quan H., Lin Y., Li J., Yang Q. 2016. Involvement of microRNA-135a-5p in the protective effects of hydrogen sulfide against Parkinson’s disease. Cell. Physiol. Biochem. 40, 18–26. https://doi.org/10.1159/000452521
  118. Zhang J., Liu W., Wang Y., Zhao S., Chang N. 2017. miR-135b Plays a neuroprotective role by targeting GSK3β in MPP+-intoxicated SH-SY5Y Cells. Dis. Markers. 2017, 5806146. https://doi.org/10.1155/2017/5806146
  119. Tiedt S., Prestel M., Malik R., Schieferdecker N., Duering M., Kautzky V., Stoycheva I., Böck J., Northoff B.H., Klein M., Dorn F., Krohn K., Teupser D., Liesz A., Plesnila N., Holdt L.M., Dichgans M. 2017. RNA-Seq Identifies Circulating miR-125a-5p, miR-125b-5p, and miR-143-3p as potential biomarkers for acute ischemic stroke. Circ. Res. 121, 970–980. https://doi.org/10.1161/CIRCRESAHA.117.311572
  120. Shen Y., Shen Z., Guo L., Zhang Q., Wang Z., Miao L., Wang M., Wu J., Guo W., Zhu Y. 2018. MiR-125b-5p is involved in oxygen and glucose deprivation injury in PC-12 cells via CBS/H2S pathway. Nitric Oxide. 78, 11–21. https://doi.org/10.1016/j.niox.2018.05.004
  121. Zhang Q., Shen Z., Shen Y., Ma M., Jue H., Zhu Y., Guo W. 2022. The regulatory role of MiR-203 in oxidative stress induced cell injury through the CBS/H2S pathway. Nitric Oxide. 118, 31–38. https://doi.org/10.1016/j.niox.2021.10.007
  122. Chen Z., Zhang Z., Zhang D., Li H., Sun Z. 2016. Hydrogen sulfide protects against TNF-α induced neuronal cell apoptosis through miR-485-5p/TRADD signaling. Biochem. Biophys. Res. Commun. 478, 1304–1309. https://doi.org/10.1016/j.bbrc.2016.08.116
  123. Chen H.J., Qian L., Li K., Qin Y.Z., Zhou J.J., Ji X.Y., Wu D.D. 2023. Hydrogen sulfide-induced post-translational modification as a potential drug target. Genes Dis. 10, 1870–1882. https://doi.org/10.1016/j.gendis.2022.03.022
  124. Sobolewski C., Dubuquoy L., Legrand N. 2022. MicroRNAs, tristetraprolin family members and HuR: a complex interplay controlling cancer-related processes. Cancers (Basel). 14, 3516. https://doi.org/10.3390/cancers14143516
  125. Armstead W.M., Kiessling J.W., Kofke W.A., Vavilala M.S. 2010. SNP improves cerebral hemodynamics during normotension but fails to prevent sex dependent impaired cerebral autoregulation during hypotension after brain injury. Brain Res. 1330, 142–150. https://doi.org/10.1016/j.brainres.2010.03.024
  126. Nazari Q.A., Mizuno K., Kume T., Takada-Takatori Y., Izumi Y., Akaike A. 2012. In vivo brain oxidative stress model induced by microinjection of sodium nitroprusside in mice. J. Pharmacol. Sci. 120, 105–111. https://doi.org/10.1254/jphs.12143FP
  127. Bradley S.A., Steinert J.R. 2015. Characterisation and comparison of temporal release profiles of nitric oxide generating donors. J. Neurosci. Methods. 245, 116–124. https://doi.org/10.1016/j.jneumeth.2015.02.024
  128. Bates J.N., Baker M.T., Guerra R., Harrison D.G. 1991. Nitric oxide generation from nitroprusside by vascular tissue. Biochem. Pharmacol. 42, S157–S165. https://doi.org/10.1016/0006-2952(91)90406-U
  129. Smith J.N., Dasgupta T.P. 2002. Mechanism of nitric oxide release. I. Two-electron reduction of sodium nitroprusside by l-cysteine in aqueous solution. Inorg. React. Mech. 3, 181–195. https://doi.org/10.1080/10286620210352
  130. Grossi L., D’Angelo S. 2005. Sodium nitroprusside: mechanism of NO release mediated by sulfhydryl-containing molecules. J. Med. Chem. 48, 2622–2626. https://doi.org/10.1021/jm049857n
  131. Lu D., Mahmood A., Zhang R., Li Y., Chopp M. 2003. Upregulation of neurogenesis and reduction in functional deficits following administration of DETA/NONOate, a nitric oxide donor, after traumatic brain injury in rats. J. Neurosurg. 99, 351–361. https://doi.org/10.3171/jns.2003.99.2.0351
  132. Thompson A., Mander P., Brown G. 2009. The NO donor DETA-NONOate reversibly activates an inward current in neurones and is not mediated by the released nitric oxide. Br. J. Pharmacol. 158, 1338–1343. https://doi.org/10.1111/j.1476-5381.2009.00400.x
  133. Rosenberg P.A., Li Y., Le M., Zhang Y. 2000. Nitric Oxide-stimulated increase in extracellular adenosine accumulation in rat forebrain neurons in culture is associated with ATP hydrolysis and inhibition of adenosine kinase activity. J. Neurosci. 20, 6294–6301. https://doi.org/10.1523/JNEUROSCI.20-16-06294.2000
  134. Keynes R.G., Griffiths C.H., Hall C., Garthwaite J. 2005. Nitric oxide consumption through lipid peroxidation in brain cell suspensions and homogenates. Biochem. J. 387, 685–694. https://doi.org/10.1042/BJ20041431
  135. Yoo J., Lee J., Lee C.H. 2010. Characterization of nitric oxide-releasing microparticles for the mucosal delivery. J. Biomed. Mater. Res. Part A. 92A, 1233–1243. https://doi.org/10.1002/jbm.a.32434
  136. Alencar J.L., Lobysheva I., Chalupsky K., Geffard M., Nepveu F., Stoclet J.C., Muller B. 2003. S-nitrosating nitric oxide donors induce long-lasting inhibition of contraction in isolated arteries. J. Pharmacol. Exp. Ther. 307, 152–159. https://doi.org/10.1124/jpet.103.052605
  137. Corti A., Franzini M., Scataglini I., Pompella A. 2014. Mechanisms and targets of the modulatory action of S-nitrosoglutathione (GSNO) on inflammatory cytokines expression. Arch. Biochem. Biophys. 562, 80–91. https://doi.org/10.1016/j.abb.2014.08.002
  138. Liu G., Lu D., Wu J., Wang S., Duan A., Ren Y., Zhang Y., Meng L., Shou R., Li H., Wang Z., Wang Z., Sun X. 2025. Enhancing S-nitrosoglutathione reductase decreases S-nitrosylation of ERO1α and reduces neuronal death in secondary traumatic brain injury. Nitric Oxide. 154, 29–41. https://doi.org/10.1016/j.niox.2024.11.005
  139. Dong N., Diao Y., Ding M., Cao B., Jiang D. 2017. The effects of 7-nitroindazole on serum neuron-specific enolase and astroglia-derived protein (S100β) levels after traumatic brain injury. Exp. Ther. Med. 13, 3183–3188. https://doi.org/10.3892/etm.2017.4411
  140. Gürsoy-Özdemir Y., Bolay H., Saribaş O., Dalkara T. 2000. Role of endothelial nitric oxide generation and peroxynitrite formation in reperfusion injury after focal cerebral ischemia. Stroke. 31, 1974–1981. https://doi.org/10.1161/01.STR.31.8.1974
  141. Lu Y.C., Liu S., Gong Q.Z., Hamm R.J., Lyeth B.G. 1997. Inhibition of nitric oxide synthase potentiates hypertension and increases mortality in traumatically brain-injured rats. Mol. Chem. Neuropathol. 30, 125–137. https://doi.org/10.1007/BF02815154
  142. Tao R.R., Ji Y.L., Lu Y.M., Fukunaga K., Han F. 2012. Targeting nitrosative stress for neurovascular protection: New implications in brain diseases. Curr. Drug Targets. 13, 272–284. https://doi.org/10.2174/138945012799201649
  143. Zhang P., Ma L., Yang Z., Li H., Gao Z. 2018. 5,10,15,20-Tetrakis(4-sulfonatophenyl)porphyrinato iron(III) chloride (FeTPPS), a peroxynitrite decomposition catalyst, catalyzes protein tyrosine nitration in the presence of hydrogen peroxide and nitrite. J. Inorg. Biochem. 183, 9–17. https://doi.org/10.1016/j.jinorgbio.2018.03.003
  144. Seren M., Budak B., Turan N., Parlar A.I., Akar F., Ulus A.T. 2008. Collaborative therapy with nebivalol and l-NAME for spinal cord ischemia/reperfusion injury. Ann. Vasc. Surg. 22, 425–431. https://doi.org/10.1016/j.avsg.2007.12.024
  145. Corbett J.A., Tilton R.G., Chang K., Hasan K.S., Ido Y., Wang J.L., Sweetland M.A., Lancaster J.R., Williamson J.R., McDaniel M.L. 1992. Aminoguanidine, a novel inhibitor of nitric oxide formation, prevents diabetic vascular dysfunction. Diabetes. 41, 552–556. https://doi.org/10.2337/diab.41.4.552
  146. Di F., Yan-ting G., Hui L., Tao T., Zai-hua X., Xue-ying S., Hong-li X., Yun-jie W. 2008. Role of aminoguanidine in brain protection in surgical brain injury in rat. Neurosci. Lett. 448, 204–207. https://doi.org/10.1016/j.neulet.2008.10.038
  147. Fan Z., Wang Y., Cao Y., Zhang M., Zhang Z., Lv G., Lu W., Zhang Y. 2010. The effect of aminoguanidine on compression spinal cord injury in rats. Brain Res. 1342, 1–10. https://doi.org/10.1016/j.brainres.2010.04.038
  148. Hall C.N., Garthwaite J. 2009. What is the real physiological NO concentration in vivo? Nitric Oxide. 21, 92–103. https://doi.org/10.1016/j.niox.2009.07.002
  149. Xu K., Wu F., Xu K., Li Z., Wei X., Lu Q, Jiang T., Wu F., Xu X., Xiao J., Chen D., Zhang H. 2018. NaHS restores mitochondrial function and inhibits autophagy by activating the PI3K/Akt/mTOR signalling pathway to improve functional recovery after traumatic brain injury. Chem. Biol. Interact. 286, 96–105. https://doi.org/10.1016/j.cbi.2018.02.028
  150. Wang J., Zhang N., Liu H.Z., Wang J.L., Zhang Y.B., Su D.D., Zhang L.M., Li B.D., Miao H.T., Miao J. 2025. NaHS alleviates neuropathic pain in mice by inhibiting IL-17-mediated dopamine (DA) neuron necroptosis in the VTA. Brain Res. Bull. 220, 111168. https://doi.org/10.1016/j.brainresbull.2024.111168
  151. Cheung N.S., Peng Z.F., Chen M.J., Moore P.K., Whiteman M. 2007. Hydrogen sulfide induced neuronal death occurs via glutamate receptor and is associated with calpain activation and lysosomal rupture in mouse primary cortical neurons. Neuropharmacology. 53, 505–514. https://doi.org/10.1016/j.neuropharm.2007.06.014
  152. Bourdeaux C., Brown J. 2010. Effect of 8.4% sodium bicarbonate on raised intracranial pressure after traumatic brain injury. Crit. Care. 14, P290. https://doi.org/10.1186/cc8522
  153. Lazarević M., Mazzon E., Momčilović M., Basile M.S., Colletti G., Petralia M.C., Bramanti P., Nicoletti F., Miljković Đ. 2018. The H2S Donor GYY4137 stimulates reactive oxygen species generation in BV2 cells while suppressing the secretion of TNF and Nitric Oxide. Molecules. 23, 2966. https://doi.org/10.3390/molecules23112966
  154. Jia J., Xiao Y., Wang W., Qing L., Xu Y., Song H., Zhen X., Ao G., Alkayed N.J., Cheng J. 2013. Differential mechanisms underlying neuroprotection of hydrogen sulfide donors against oxidative stress. Neurochem. Int. 62, 1072–1078. https://doi.org/10.1016/j.neuint.2013.04.001
  155. Wei S., Zou M., Huan J., Li D., Zhang P., Lu M., Xiong J., Ma Y. 2022. Role of the hydrogen sulfide-releasing donor ADT-OH in the regulation of mammal neural precursor cells. J. Cell. Physiol. 237, 2877–2887. https://doi.org/10.1002/jcp.30726
  156. Zhang J., Li S., Yang Z., Liu C., Chen X., Zhang Y., Zhang F., Shi H., Chen X., Tao L., Shan H., Zhang M. 2022. Implantation of injectable SF hydrogel with sustained hydrogen sulfide delivery reduces neuronal pyroptosis and enhances functional recovery after severe intracerebral hemorrhage. Biomater. Adv. 135, 212743. https://doi.org/10.1016/j.bioadv.2022.212743
  157. Wang R., Wu X.X., Tian Z., Hu T., Cai C., Wu G.P., Jiang G.B., Liu B. 2023. Sustained release of hydrogen sulfide from anisotropic ferrofluid hydrogel for the repair of spinal cord injury. Bioact. Mater. 23, 118–128. https://doi.org/10.1016/j.bioactmat.2022.10.020
  158. Asimakopoulou A., Panopoulos P., Chasapis C., Coletta C., Zhou Z., Cirino G., Giannis A., Szabo C., Spyroulias G.A., Papapetropoulos A. 2013. Selectivity of commonly used pharmacological inhibitors for cystathionine β synthase (CBS) and cystathionine γ lyase (CSE). Br. J. Pharmacol. 169, 922–932. https://doi.org/10.1111/bph.12171
  159. Du F., Eid T., Schwarcz R. 1997. Neuronal damage after the injection of amino-oxyacetic acid into the rat entorhinal cortex: A silver impregnation study. Neuroscience. 82, 1165–1178. https://doi.org/10.1016/S0306-4522(97)00354-0
  160. Suzuki T., Okamoto Y., Sekikawa T., Nemoto T., Moriya H., Murayama S., Nakaya H. 1995. Effects of GABAergic drugs on the recovery of reflex potentials after spinal cord ischemia in cats. Jpn. J. Pharmacol. 68, 423–429. https://doi.org/10.1254/jjp.68.423
  161. Gui Y., Li A., Qiu B., Chen F., Chen L., Liu D., Chen S., Zhou W., Zhou H. 2016. Endogenous CBS–H2S pathway contributes to the development of CCI-induced neuropathic pain. Neurochem. Res. 41, 1381–1389. https://doi.org/10.1007/s11064-016-1842-z

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».