The role of nitric oxide and hydrogen sulfide in the regulation of pro- and antiapoptotic gene expression in central and peripheral nervous system injuries
- 作者: Rodkin S.V.1
-
隶属关系:
- Research Laboratory “Medical Digital Imaging Based on a Basic Model”, Department of Bioengineering, Faculty of Bioengineering and Veterinary Medicine, Don State Technical University
- 期: 卷 42, 编号 5 (2025)
- 页面: 356-381
- 栏目: ОБЗОРЫ
- URL: https://journal-vniispk.ru/0233-4755/article/view/353190
- DOI: https://doi.org/10.31857/S0233475525050022
- ID: 353190
如何引用文章
详细
Injuries to the central and peripheral nervous systems are accompanied by complex cellular and molecular processes, including neuroinflammation, oxidative stress, and programmed cell death. Nitric oxide (NO) and hydrogen sulfide (H₂S) play pivotal roles in these processes, exhibiting dual effects. Apoptosis is a key mechanism involved in the death of neurons and glial cells following neurotrauma. NO and H₂S can regulate the expression of anti- and pro-apoptotic genes either through direct modification of DNA and RNA or via more complex epigenetic mechanisms involving activation or inhibition of transcription factors. This review provides a detailed overview of NO- and H₂S-dependent signaling pathways regulating the expression of anti- and pro-apoptotic genes in various types of neurotrauma and discusses the dual effects of these gasotransmitters in pharmacological modulation.
作者简介
S. Rodkin
Research Laboratory “Medical Digital Imaging Based on a Basic Model”, Department of Bioengineering, Faculty of Bioengineering and Veterinary Medicine, Don State Technical University
编辑信件的主要联系方式.
Email: rodkin_stas@mail.ru
Rostov-on-Don, 344000 Russia
参考
- O'Leary S., Sherwood R., Gundlach C., Bah M., Azam F., Robledo A., Tom R., Price A., Jenkins A., Darko K., Barrie U., Braga B.P., Aoun S.G., Whittemore B.A., Totimeh T. 2024. Global neurotrauma: a systematic review and summary of the current state of registries around the world. J. Clin. Neurosci. 129, 110838. https://doi.org/10.1016/j.jocn.2024.110838
- Woodburn S.C., Bollinger J.L., Wohleb E.S. 2021. The semantics of microglia activation: neuroinflammation, homeostasis, and stress. J. Neuroinflammation. 18, 258. https://doi.org/10.1186/s12974-021-02309-6
- Plesnila N., von Baumgarten L., Retiounskaia M., Engel D., Ardeshiri A., Zimmermann R., Hoffmann F., Landshamer S., Wagner E., Culmsee C. 2007. Delayed neuronal death after brain trauma involves p53-dependent inhibition of NF-κB transcriptional activity. Cell Death Differ. 14, 1529–1541. https://doi.org/10.1038/sj.cdd.4402159
- Rodkin S.V., Dzreyan V.A., Demyanenko S.V., Uzdensky A.B. 2021. The role of p53-dependent signaling pathways in survival and death of neurons and glial cells after peripheral nerve injury. Biochem. (Moscow), Suppl. Ser. A Membr. Cell Biol. 15, 334–347. https://doi.org/10.1134/S199074782106009X
- Zhang J., Zhang S., Shan H., Zhang M. 2020. Biologic effect of hydrogen sulfide and its role in traumatic brain injury. Oxid. Med. Cell. Longev. 2020, 7301615. https://doi.org/10.1155/2020/7301615
- Rodkin S.V., Nwosu C.D. 2023. Role of nitric oxide and hydrogen sulfide in neuronal and glial cell death in neurodegenerative processes. Biochem. (Moscow), Suppl. Ser. A Membr. Cell Biol. 17, 223–242. https://doi.org/10.1134/S1990747823050069
- Bruce King S. 2013. Potential biological chemistry of hydrogen sulfide (H2S) with the nitrogen oxides. Free Radic. Biol. Med. 55, 1–7. https://doi.org/10.1016/j.freeradbiomed.2012.11.005
- Гусакова С.В., Ковалев И.В., Смаглий Л.В., Бирулина Ю.Г., Носарев А.В., Петрова И.В., Медведев М.А., Орлов С.Н., Реутов В.П. 2015. Газовая сигнализация в клетках млекопитающих. Успехи физиологических наук. 46, 53–73.
- Яковлева О.В., Шафигуллин М.У., Ситдикова Г.Ф. 2013. Роль оксида азота в регуляции секреции медиатора и процессов экзо- и эндоцитоза синаптических везикул в двигательном нервном окончании мыши. Нейрохимия. 30, 109–116. https://doi.org/10.7868/S1027813313020106
- Вараксин А.A., Пущина Е.В. 2012. Значение сероводорода в регуляции функций органов. Тихоокеанский медицинский журнал. 2, 27–36.
- Яковлев А.В., Ситдикова Г.Ф. 2014. Физиологическая роль сероводорода в нервной системе. Гены и Клетки. 9, 34–40.
- Calabrese V., Mancuso C., Calvani M., Rizzarelli E., Butterfield D.A., Giuffrida Stella A.M. 2007. Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity. Nat. Rev. Neurosci. 8, 766–775. https://doi.org/10.1038/nrn2214
- Vasudevan D., Bovee R.C., Thomas D.D. 2016. Nitric oxide, the new architect of epigenetic landscapes. Nitric Oxide. 59, 54–62. https://doi.org/10.1016/j.niox.2016.08.002
- Dogaru B.G., Munteanu C. 2023. The role of hydrogen sulfide (H2S) in epigenetic regulation of neurodegenerative diseases: a systematic review. Int. J. Mol. Sci. 24, 12555. https://doi.org/10.3390/ijms241612555
- Lawen A. 2003. Apoptosis – an introduction. BioEssays. 25, 888–896. https://doi.org/10.1002/bies.10329
- Lossi L. 2022. The concept of intrinsic versus extrinsic apoptosis. Biochem. J. 479, 357–384. https://doi.org/10.1042/BCJ20210854
- Львова О.А., Гусева В.В., Чегодавев Д.А. 2009. Апоптоз: молекулярная биология и его роль в патологии нервной системы (литературный обзор). Нейрохирургия и неврология детского возраста. 3–4, 87–99.
- Gopisetty G., Ramachandran K., Singal R. 2006. DNA methylation and apoptosis. Mol. Immunol. 43, 1729–1740. https://doi.org/10.1016/j.molimm.2005.11.010
- Subramanian S., Steer C.J. 2010. MicroRNAs as gatekeepers of apoptosis. J. Cell. Physiol. 223, 289–298. https://doi.org/10.1002/jcp.22066
- Bianchi M.E., Manfredi A. 2004. Chromatin and cell death. Biochim. Biophys. Acta – Gene Struct. Expr. 1677, 181–186. https://doi.org/10.1016/j.bbaexp.2003.10.017
- Manoochehri M., Borhani N., Karbasi A., Koochaki A., Kazemi B. 2016. Promoter hypermethylation and downregulation of the FAS gene may be involved in colorectal carcinogenesis. Oncol. Lett. 12, 285–290. https://doi.org/10.3892/ol.2016.4578
- Hervouet E., Cheray M., Vallette F., Cartron P.F. 2013. DNA methylation and apoptosis resistance in cancer cells. Cells. 2, 545–573. https://doi.org/10.3390/cells2030545
- Morrison B.E., Majdzadeh N., D’Mello S.R. 2007. Histone deacetylases: Focus on the nervous system. Cell. Mol. Life Sci. 64, 2258–2269. https://doi.org/10.1007/s00018-007-7035-9
- Payne C.T., Tabassum S., Wu S., Hu H., Gusdon A.M., Choi H.A., Ren X.S. 2023. Role of microRNA-34a in blood–brain barrier permeability and mitochondrial function in ischemic stroke. Front. Cell. Neurosci. 17, 1278334. https://doi.org/10.3389/fncel.2023.1278334
- Wu Q., Yi X. 2018. Down-regulation of long noncoding RNA MALAT1 protects hippocampal neurons against excessive autophagy and apoptosis via the PI3K/Akt signaling pathway in rats with epilepsy. J. Mol. Neurosci. 65, 234–245. https://doi.org/10.1007/s12031-018-1093-3
- Khan M., Sekhon B., Giri S., Jatana M., Gilg A.G., Ayasolla K., Elango C., Singh A.K., Singh I. 2005. S-nitrosoglutathione reduces inflammation and protects brain against focal cerebral ischemia in a rat model of experimental stroke. J. Cereb. Blood Flow Metab. 25, 177–192. https://doi.org/10.1038/sj.jcbfm.9600012
- Ow Y.P., Green D.R., Hao Z., Mak T.W. 2008. Cytochrome c: Functions beyond respiration. Nat. Rev. Mol. Cell Biol. 9, 532–542. https://doi.org/10.1038/nrm2434
- Hogg N. 2002. The biochemistry and physiology of S-nitrosothiols. Annu. Rev. Pharmacol. Toxicol. 42, 585–600. https://doi.org/10.1146/annurev.pharmtox.42.092501.104328
- Rössig L., Fichtlscherer B., Breitschopf K., Haendeler J., Zeiher A.M., Mülsch A., Dimmeler S. 1999. Nitric oxide inhibits caspase-3 by s-nitrosationin vivo. J. Biol. Chem. 274, 6823–6826. https://doi.org/10.1074/jbc.274.11.6823
- Lee H.M., Choi J.W., Choi M.S. 2021. Role of nitric oxide and protein S-nitrosylation in ischemia-reperfusion injury. Antioxidants. 11, 57. https://doi.org/10.3390/antiox11010057
- Azad N., Vallyathan V., Wang L., Tantishaiyakul V., Stehlik C., Leonard S.S., Rojanasakul Y. 2006. S-nitrosylation of Bcl-2 inhibits its ubiquitin-proteasomal degradation. J. Biol. Chem. 281, 34124–3434. https://doi.org/10.1074/jbc.M602551200
- Pervin S., Singh R.G. 2003. Nitric-oxide-induced Bax integration into the mitochondrial membrane commits MDA-MB-468 cells to apoptosis: Essential role of Akt. Cancer Res. 67, 5470–5479
- Ye X., Li Y., Lv B., Qiu B., Zhang S., Peng H., Kong W., Tang C., Huang Y., Du J., Jin H. 2022. Endogenous hydrogen sulfide persulfidates caspase-3 at cysteine 163 to inhibit doxorubicin-induced cardiomyocyte apoptosis. Oxid. Med. Cell. Longev. 2022, 6153772. https://doi.org/10.1155/2022/6153772
- Rodkin S., Nwosu C., Raevskaya M., Khanukaev M., Bekova K., Vasilieva I., Vishnyak D., Tolmacheva A., Efremova E., Gasanov M., Tyurin A. 2023. The role of hydrogen sulfide in the localization and expression of p53 and cell death in the nervous tissue in traumatic brain injury and axotomy. Int. J. Mol. Sci. 24, 15708. https://doi.org/10.3390/ijms242115708
- Laval F., Wink D.A. 1994. Inhibition by nitric oxide of the repair protein, O6–DNA-methyltransferase. Carcinogenesis. 15, 443–447. https://doi.org/10.1093/carcin/15.3.443
- Nott A., Watson P.M., Robinson J.D., Crepaldi L., Riccio A. 2008. S-nitrosylation of histone deacetylase 2 induces chromatin remodelling in neurons. Nature. 455, 411–445. https://doi.org/10.1038/nature07238
- Sun Y., Li D., Su Y., Zhao H., Pang W., Zhao W., Wu S. 2020. Protective effect of hydrogen sulfide is mediated by negative regulation of epigenetic histone acetylation in Parkinson’s disease. Arch. Med. Sci. 19, 1124 –1135. https://doi.org/10.5114/aoms.2020.93121
- Wang B., Han S. 2018. Inhibition of inducible nitric oxide synthase attenuates deficits in synaptic plasticity and brain functions following traumatic brain injury. Cerebellum. 17, 477–484. https://doi.org/10.1007/s12311-018-0934-5
- Babkina I.I., Sergeeva S.P., Gorbacheva L.R. 2021. The role of NF-κB in neuroinflammation. Neurochem. J. 15, 114–128. https://doi.org/10.1134/S1819712421020045
- Ghosh G., Wang V.Y., Huang D., Fusco A. 2012. NF-κB regulation: Lessons from structures. Immunol. Rev. 246, 36–58. https://doi.org/10.1111/j.1600-065X.2012.01097.x
- Zheng C., Yin Q., Wu H. 2011. Structural studies of NF-κB signaling. Cell Res. 21, 183–195. https://doi.org/10.1038/cr.2010.171
- Reynaert N.L., Ckless K., Korn S.H., Vos N., Guala A.S., Wouters E.F.M., van der Vliet A., Janssen-Heininger Y.M.W. 2004. Nitric oxide represses inhibitory κB kinase through S-nitrosylation. Proc. Natl. Acad. Sci. 101, 8945–8950. https://doi.org/10.1073/pnas.0400588101
- Jin W., Wang H., Yan W., Zhu L., Hu Z., Ding Y., Tang K. 2009. Role of Nrf2 in protection against traumatic brain injury in mice. J. Neurotrauma. 26, 131–139. https://doi.org/10.1089/neu.2008.0655
- Yan W., Wang H.D., Hu Z.G., Wang Q.F., Yin H.X. 2008. Activation of Nrf2–ARE pathway in brain after traumatic brain injury. Neurosci. Lett. 431, 150–154. https://doi.org/10.1016/j.neulet.2007.11.060
- Guo X., Kang J., Wang Z., Wang Y., Liu M., Zhu D., Yang F., Kang X. 2022. Nrf2 signaling in the oxidative stress response after spinal cord injury. Neuroscience. 498, 311–324. https://doi.org/10.1016/j.neuroscience.2022.06.007
- Tang W., Chen X., Liu H., Lv Q., Zou J., Shi Y., Liu Z. 2018. Expression of Nrf2 promotes schwann cell-mediated sciatic nerve recovery in diabetic peripheral neuropathy. Cell. Physiol. Biochem. 46, 1879–1894. https://doi.org/10.1159/000489373
- Dhakshinamoorthy S., Porter A.G. 2004. Nitric oxide-induced transcriptional up-regulation of protective genes by Nrf2 via the antioxidant response element counteracts apoptosis of neuroblastoma cells. J. Biol. Chem. 279, 20096–20107. https://doi.org/10.1074/jbc.M312492200
- Zhang M., An C., Gao Y., Leak R.K., Chen J., Zhang F. 2013. Emerging roles of Nrf2 and phase II antioxidant enzymes in neuroprotection. Prog. Neurobiol. 100, 30–47. https://doi.org/10.1016/j.pneurobio.2012.09.003
- Wang B., Zhu X., Kim Y., Li J., Huang S., Saleem S., Li C., Xu Y., Dore S., Cao W. 2012. Histone deacetylase inhibition activates transcription factor Nrf2 and protects against cerebral ischemic damage. Free Radic. Biol. Med. 52, 928–936. https://doi.org/10.1016/j.freeradbiomed.2011.12.006
- Wu C., Zhang H., Hong H., Chen C., Chen J., Zhang J., Xue P., Jiang J., Cui Z. 2022. E3 ubiquitin ligase Triad1 promotes neuronal apoptosis by regulating the p53-caspase3 pathway after spinal cord injury. Somatosens. Mot. Res. 39, 21–28. https://doi.org/10.1080/08990220.2021.1986385
- Shinozaki S., Chang K., Sakai M., Shimizu N., Yamada M., Tanaka T., Nakazawa H., Ichinose F., Yamada Y., Ishigami A., Ito H., Ouchi Y., Starr M.E., Saito H., Shimokado K., Stamler J.S., Kaneki M. 2014. Inflammatory stimuli induce inhibitory S-nitrosylation of the deacetylase SIRT1 to increase acetylation and activation of p53 and p65. Sci. Signal. 7, ra106. https://doi.org/10.1126/scisignal.2005375
- Subhasree N., Jiangjiang Q., Kalkunte S., Minghai W., Ruiwen Z. 2013. The MDM2-p53 pathway revisited. J. Biomed. Res. 27, 254. https://doi.org/10.7555/JBR.27.20130030
- de Rozieres S., Maya R., Oren M., Lozano G. 2000. The loss of mdm2 induces p53 mediated apoptosis. Oncogene. 19, 1691–1697. https://doi.org/10.1038/sj.onc.1203468
- Joshi Y., Sória M., Quadrato G., Inak G., Zhou L., Hervera A., Rathore K.I., Elnaggar M., Cucchiarini M., Marine J.C., Puttagunta R., Di Giovanni S. 2015. The MDM4/MDM2-p53-IGF1 axis controls axonal regeneration, sprouting and functional recovery after CNS injury. Brain. 138, 1843–1862. https://doi.org/10.1093/brain/awv125
- Yang L.Y., Greig N.H., Tweedie D., Jung Y.J., Chiang Y.H., Hoffer B.J., Miller J.P., Chang K.H., Wang J.Y. 2020. The p53 inactivators pifithrin-μ and pifithrin-α mitigate TBI-induced neuronal damage through regulation of oxidative stress, neuroinflammation, autophagy and mitophagy. Exp. Neurol. 324, 113135. https://doi.org/10.1016/j.expneurol.2019.113135
- Sen N., Hara M.R., Kornberg M.D., Cascio M.B., Bae B.I., Shahani N., Thomas B., Dawson T.M., Dawson V.L., Snyder S.H., Sawa A. 2008. Nitric oxide-induced nuclear GAPDH activates p300/CBP and mediates apoptosis. Nat. Cell Biol. 10, 866–873. https://doi.org/10.1038/ncb1747
- Rodkin S., Dzreyan V., Bibov M., Ermakov A., Derezina T., Kirichenko E. 2022. NO-dependent mechanisms of p53 expression and cell death in rat’s dorsal root ganglia after sciatic-nerve transection. Biomedicines. 10, 1664. https://doi.org/10.3390/biomedicines10071664
- Ding J.Y., Kreipke C.W., Speirs S.L., Schafer P., Schafer S., Rafols J.A. 2009. Hypoxia-inducible factor-1α signaling in aquaporin upregulation after traumatic brain injury. Neurosci. Lett. 453, 68–72. https://doi.org/10.1016/j.neulet.2009.01.077
- Li A., Sun X., Ni Y., Chen X., Guo A. 2013. HIF-1α Involves in neuronal apoptosis after traumatic brain injury in adult rats. J. Mol. Neurosci. 51, 1052–1062. https://doi.org/10.1007/s12031-013-0084-7
- Pollard P., Yang M., Su H., Soga T., Kranc K. 2014. Prolyl hydroxylase domain enzymes: important regulators of cancer metabolism. Hypoxia. 2, 127–142. https://doi.org/10.2147/HP.S47968
- Khan M., Dhammu T.S., Baarine M., Kim J., Paintlia M.K., Singh I., Singh A.K. 2018. GSNO promotes functional recovery in experimental TBI by stabilizing HIF-1α. Behav. Brain Res. 340, 63–70. https://doi.org/10.1016/j.bbr.2016.10.037
- Sogawa K., Numayama-Tsuruta K., Ema M., Abe M., Abe H., Fujii-Kuriyama Y. 1998. Inhibition of hypoxia-inducible factor 1 activity by nitric oxide donors in hypoxia. Proc. Natl. Acad. Sci. 95, 7368–7373. https://doi.org/10.1073/pnas.95.13.7368
- Tabuchi A., Sano K., Oh E., Tsuchiya T., Tsuda M. 1994. Modulation of AP-1 activity by nitric oxide (NO) in vitro: NO-mediated modulation of AP-1. FEBS Lett. 351, 123–127. https://doi.org/10.1016/0014-5793(94)00839-6
- Park H.S., Mo J.S., Choi E.J. 2006. Nitric oxide inhibits an interaction between JNK1 and c-Jun through nitrosylation. Biochem. Biophys. Res. Commun. 351, 281–286. https://doi.org/10.1016/j.bbrc.2006.10.034
- Pei D., Song Y., Yu H., Hu W., Du Y., Zhang G. 2008. Exogenous nitric oxide negatively regulates c-Jun N-terminal kinase activation via inhibiting endogenous NO-induced S-nitrosylation during cerebral ischemia and reperfusion in rat hippocampus. J. Neurochem. 106, 1952–1963. https://doi.org/10.1111/j.1471-4159.2008.05531.x
- Beni S.M., Kohen R., Reiter R.J., Tan D., Shohami E. 2004. Melatonin-induced neuroprotection after closed head injury is associated with increased brain antioxidants and attenuated late-phase activation of NF-κB and AP-1. FASEB J. 18, 149–151. https://doi.org/10.1096/fj.03-0323fje
- Ding Y., Luan W., Shen X., Wang Z., Cao Y. 2024. E2F1 mediates traumatic brain injury and regulates bdnf-as to promote the progression of Alzheimer’s disease. Neurotox. Res. 42, 17. https://doi.org/10.1007/s12640-024-00695-2
- Cui X., Zhang J., Ma P., Myers D.E., Goldberg I.G., Sittler K.J., Barb J.J., Munson P.J., Cintron Adel P., McCoy J.P., Wang S., Danner R.L. 2005. cGMP-independent nitric oxide signaling and regulation of the cell cycle. BMC Genomics. 6, 151. https://doi.org/10.1186/1471-2164-6-151
- Oliva A.A., Kang Y., Sanchez-Molano J., Furones C., Atkins C.M. 2012. STAT3 signaling after traumatic brain injury. J. Neurochem. 120, 710–720. https://doi.org/10.1111/j.1471-4159.2011.07610.x
- Kim J., Won J.S., Singh A.K., Sharma A.K., Singh I. 2014. STAT3 regulation by S-nitrosylation: implication for inflammatory disease. Antioxid. Redox Signal. 20, 2514–2527. https://doi.org/10.1089/ars.2013.5223
- Li L., Zhang J., Jin B., Block E.R., Patel J.M. 2007. Nitric oxide upregulation of caspase-8 mRNA expression in lung endothelial cells: Role of JAK2/STAT-1 signaling. Mol. Cell. Biochem. 305, 71–77. https://doi.org/10.1007/s11010-007-9529-z
- Marinkovic T., Marinkovic D. 2021. Obscure involvement of MYC in neurodegenerative diseases and neuronal repair. Mol. Neurobiol. 58, 4169–4177. https://doi.org/10.1007/s12035-021-02406-w
- Raman D., Chong S.J.F., Iskandar K., Hirpara J.L., Pervaiz S. 2020. Peroxynitrite promotes serine-62 phosphorylation-dependent stabilization of the oncoprotein c-Myc. Redox Biol. 34, 101587. https://doi.org/10.1016/j.redox.2020.101587
- Morrish F., Hockenbery D. 2014. MYC and mitochondrial biogenesis. Cold Spring Harb. Perspect. Med. 4, a014225. https://doi.org/10.1101/cshperspect.a014225
- Liu X.K., Abernethy D.R., Andrawis N.S. 1998. Nitric oxide inhibits Oct-1 DNA binding activity in cultured vascular smooth muscle cells. Life Sci. 62, 739–749. https://doi.org/10.1016/S0024-3205(97)01172-7
- Zhang X., Vlkolinsky R., Wu C., Dolatabadi N., Scott H., Prikhodko O., Zhang A., Blanco M., Lang N., Piña-Crespo J., Nakamura T., Roberto M., Lipton S.A. 2025. S-Nitrosylation of CRTC1 in Alzheimer’s disease impairs CREB-dependent gene expression induced by neuronal activity. Proc. Natl. Acad. Sci. 122, e2418179122. https://doi.org/10.1073/pnas.2418179122
- Kanao T., Sawada T., Davies S.A., Ichinose H., Hasegawa K., Takahashi R., Hattori N., Imai Y. 2012. The nitric oxide-cyclic GMP pathway regulates FoxO and alters dopaminergic neuron survival in Drosophila. PLoS One. 7, e30958. https://doi.org/10.1371/journal.pone.0030958
- Corsello T., Komaravelli N., Casola A. 2018. Role of hydrogen sulfide in NRF2- and sirtuin-dependent maintenance of cellular redox balance. Antioxidants. 7, 129. https://doi.org/10.3390/antiox7100129
- Gupta R., Sahu M., Tripathi R., Ambasta R.K., Kumar P. 2022. Protein S-sulfhydration: Unraveling the prospective of hydrogen sulfide in the brain, vasculature and neurological manifestations. Ageing Res. Rev. 76, 101579. https://doi.org/10.1016/j.arr.2022.101579
- Gong Q.H., Wang Q., Pan L.L., Liu X.H., Huang H., Zhu Y.Z. 2010. Hydrogen sulfide attenuates lipopolysaccharide-induced cognitive impairment: A pro-inflammatory pathway in rats. Pharmacol. Biochem. Behav. 96, 52–58. https://doi.org/10.1016/j.pbb.2010.04.006
- Chen W.L., Niu Y.Y., Jiang W.Z., Tang H.L., Zhang C., Xia Q.M., Tang X.Q. 2015. Neuroprotective effects of hydrogen sulfide and the underlying signaling pathways. Rev. Neurosci. 26, 129–142. https://doi.org/10.1515/revneuro-2014-0051
- Sun X., Wu S., Mao C., Qu Y., Xu Z., Xie Y., Jiang D., Song Y. 2024. Therapeutic potential of hydrogen sulfide in ischemia and reperfusion injury. Biomolecules. 14, 740. https://doi.org/10.3390/biom14070740
- Cao L., Cao X., Zhou Y., Nagpure B.V., Wu Z.Y., Hu L.F., Yang Y., Sethi G., Moore P.K., Bian J.S. 2018. Hydrogen sulfide inhibits ATP-induced neuroinflammation and Aβ1–42 synthesis by suppressing the activation of STAT3 and cathepsin S. Brain. Behav. Immun. 73, 603–614. https://doi.org/10.1016/j.bbi.2018.07.005
- Sun J., Li X., Gu X., Du H., Zhang G., Wu J., Wang F. 2021. Neuroprotective effect of hydrogen sulfide against glutamate-induced oxidative stress is mediated via the p53/glutaminase 2 pathway after traumatic brain injury. Aging (Albany. NY). 13, 7180–7189. https://doi.org/10.18632/aging.202575
- Calenic B., Yaegaki K., Ishkitiev N., Kumazawa Y., Imai T., Tanaka T. 2013. p53-Pathway activity and apoptosis in hydrogen sulfide-exposed stem cells separated from human gingival epithelium. J. Periodontal Res. 48, 322–330. https://doi.org/10.1111/jre.12011
- Di Giovanni S., Rathore K. 2012. p53-dependent pathways in neurite outgrowth and axonal regeneration. Cell Tissue Res. 349, 87–95. https://doi.org/10.1007/s00441-011-1292-5
- Gonzalez-Cano L., Herreros-Villanueva M., Fernandez-Alonso R., Ayuso-Sacido A., Meyer G., Garcia-Verdugo J.M., Silva A., Marques M.M., Marin M.C. 2010. p73 deficiency results in impaired self renewal and premature neuronal differentiation of mouse neural progenitors independently of p53. Cell Death Dis. 1, e109. https://doi.org/10.1038/cddis.2010.87
- Pearson A.G., Gray C.W., Pearson J.F., Greenwood J.M., During M.J., Dragunow M. 2003. ATF3 enhances c-Jun-mediated neurite sprouting. Mol. Brain Res. 120, 38–45. https://doi.org/10.1016/j.molbrainres.2003.09.014
- Luo X., Ribeiro M., Bray E.R., Lee D.H., Yungher B.J., Mehta S.T., Thakor K.A., Diaz F., Lee J.K., Moraes C.T., Bixby J.L., Lemmon V.P., Park K.K. 2016. Enhanced transcriptional activity and mitochondrial localization of STAT3 co-induce axon regrowth in the adult central nervous system. Cell Rep. 15, 398–410. https://doi.org/10.1016/j.celrep.2016.03.029
- Moore D.L., Goldberg J.L. 2011. Multiple transcription factor families regulate axon growth and regeneration. Dev. Neurobiol. 71, 1186–1211. https://doi.org/10.1002/dneu.20934
- Ko K.W., Milbrandt J., DiAntonio A. 2020. SARM1 acts downstream of neuroinflammatory and necroptotic signaling to induce axon degeneration. J. Cell Biol. 219, e201912047. https://doi.org/10.1083/jcb.201912047
- Dey A., Prabhudesai S., Zhang Y., Rao G., Thirugnanam K., Hossen M.N., Dwivedi S.D., Ramchandran R., Mukherjee P., Bhattacharya R. 2020. Cystathione β-synthase regulates HIF-1α stability through persulfidation of PHD2. Sci. Adv. 6, eaaz8534. https://doi.org/10.1126/sciadv.aaz8534
- Bir S.C., Kolluru G.K., McCarthy P., Shen X., Pardue S., Pattillo C.B., Kevil C.G. 2012. Hydrogen sulfide stimulates ischemic vascular remodeling through nitric oxide synthase and nitrite reduction activity regulating hypoxia-inducible Factor-1α and vascular endothelial growth factor–dependent angiogenesis. J. Am. Heart Assoc. 1, e004093. https://doi.org/10.1161/JAHA.112.004093
- Wu B., Teng H., Yang G., Wu L., Wang R. 2012. Hydrogen sulfide inhibits the translational expression of hypoxia-inducible factor-1α. Br. J. Pharmacol. 167, 1492–1505. https://doi.org/10.1111/j.1476-5381.2012.02113.x
- Zhang Y., Gao J., Sun W., Wen X., Xi Y., Wang Y., Wei C., Xu C., Li H. 2019. H2S restores the cardioprotective effects of ischemic post-conditioning by upregulating HB-EGF/EGFR signaling. Aging (Albany. NY). 11, 1745–1758. https://doi.org/10.18632/aging.101866
- Liu X., Guo H., Wang X., Jiao H., Li L., Zheng J. 2021. c-myc protects mice from ischemia stroke through elevating microRNA-200b-5p-regulated SIRT1 expression. Brain Res. Bull. 176, 76–84. https://doi.org/10.1016/j.brainresbull.2021.07.006
- Song K., Wang F., Li Q., Shi Y.B., Zheng H.F., Peng H., Shen H.Y., Liu C.F., Hu L.F. 2014. Hydrogen sulfide inhibits the renal fibrosis of obstructive nephropathy. Kidney Int. 85, 1318–1329. https://doi.org/10.1038/ki.2013.449
- Huang Y., Omorou M., Gao M., Mu C., Xu W., Xu H. 2023. Hydrogen sulfide and its donors for the treatment of cerebral ischaemia-reperfusion injury: A comprehensive review. Biomed. Pharmacother. 161, 114506. https://doi.org/10.1016/j.biopha.2023.114506
- Majumder S., Ren L., Pushpakumar S., Sen U. 2019. Hydrogen sulphide mitigates homocysteine-induced apoptosis and matrix remodelling in mesangial cells through Akt/FOXO1 signalling cascade. Cell. Signal. 61, 66–77. https://doi.org/10.1016/j.cellsig.2019.05.003
- Li X., Yu P., Yu Y., Xu T., Liu J., Cheng Y., Yang X., Cui X., Yin C., Liu Y. 2021. Hydrogen sulfide ameliorates high glucose-induced pro-inflammation factors in HT-22 cells: Involvement of SIRT1-mTOR/NF-κB signaling pathway. Int. Immunopharmacol. 95, 107545. https://doi.org/10.1016/j.intimp.2021.107545
- Li S., Yang G. 2015. Hydrogen sulfide maintains mitochondrial DNA replication via demethylation of TFAM. Antioxid. Redox Signal. 23, 630–642. https://doi.org/10.1089/ars.2014.6186
- Hu M., Zhou B., Mao H., Sheng Q., Du B., Chen J., Pang Q., Ji Y. 2016. Exogenous hydrogen sulfide postconditioning protects isolated rat hearts from ischemia/reperfusion injury through Sirt1/PGC-1α signaling pathway. Int. Heart J. 57, 477–482. https://doi.org/10.1536/ihj.15-506
- Hou X.O., Tu H.Y., Qian H.C., Li Q., Yang Y.P., Xu G.Q., Wang F., Liu C.F., Wang Y.L., Hu L.F. 2021. AMPK S-sulfuration contributes to H2S donors-induced AMPK phosphorylation and autophagy activation in dopaminergic cells. Neurochem. Int. 150, 105187. https://doi.org/10.1016/j.neuint.2021.105187
- Szabo C., Ransy C., Módis K., Andriamihaja M., Murghes B., Coletta C., Olah G., Yanagi K., Bouillaud F. 2014. Regulation of mitochondrial bioenergetic function by hydrogen sulfide. Part I. Biochemical and physiological mechanisms. Br. J. Pharmacol. 171, 2099–2122. https://doi.org/10.1111/bph.12369
- Huang D., Jing G., Zhang L., Chen C., Zhu S. 2021. Interplay among hydrogen sulfide, nitric oxide, reactive oxygen species, and mitochondrial DNA oxidative damage. Front. Plant Sci. 12, 701681. https://doi.org/10.3389/fpls.2021.701681
- Andrés C.C., Lastra J.P. de la, Juan C.A., Plou F.J., Pérez-Lebeña E. 2023. Chemical insights into oxidative and nitrative modifications of DNA. Int. J. Mol. Sci. 24, 15240. https://doi.org/10.3390/ijms242015240
- Serpa V., Vernal J., Lamattina L., Grotewold E., Cassia R., Terenzi H. 2007. Inhibition of AtMYB2 DNA-binding by nitric oxide involves cysteine S-nitrosylation. Biochem. Biophys. Res. Commun. 361, 1048–1053. https://doi.org/10.1016/j.bbrc.2007.07.133
- Kim M., Park S.C., Lee D.Y. 2021. Glycyrrhizin as a nitric oxide regulator in cancer chemotherapy. Cancers (Basel). 13, 5762. https://doi.org/10.3390/cancers13225762
- Shackelford R., Ozluk E., Islam M.Z., Hopper B., Meram A., Ghali G., Kevil C.G. 2021. Hydrogen sulfide and DNA repair. Redox Biol. 38, 101675. https://doi.org/10.1016/j.redox.2020.101675
- Yang G., Zhao K., Ju Y., Mani S., Cao Q., Puukila S., Khaper N., Wu L., Wang R. 2013. Hydrogen sulfide protects against cellular senescence via S-Sulfhydration of Keap1 and activation of Nrf2. Antioxid. Redox Signal. 18, 1906–1919. https://doi.org/10.1089/ars.2012.4645
- Li M., Hu W., Wang R., Li Z., Yu Y., Zhuo Y., Zhang Y., Wang Z., Qiu Y., Chen K., Ding Q., Qi W., Zhu M., Zhu Y. 2022. Sp1 S-Sulfhydration induced by hydrogen sulfide inhibits inflammation via HDAC6/MyD88/NF-κB signaling pathway in adjuvant-induced arthritis. Antioxidants. 11, 732. https://doi.org/10.3390/antiox11040732
- Charidemou E., Kirmizis A. 2024. A two-way relationship between histone acetylation and metabolism. Trends Biochem. Sci. 49, 1046–1062. https://doi.org/10.1016/j.tibs.2024.10.005
- Masuda M., Nishino H., Ohshima H. 2002. Formation of 8-nitroguanosine in cellular RNA as a biomarker of exposure to reactive nitrogen species. Chem. Biol. Interact. 139, 187–197. https://doi.org/10.1016/S0009-2797(01)00299-X
- Bai Y.P., Zhang J.X., Sun Q., Zhou J.P., Luo J.M., He L.F., Lin X.C., Zhu L.P., Wu W.Z., Wang Z.Y., Zhang G.G. 2018. Induction of microRNA-199 by nitric oxide in endothelial cells is required for nitrovasodilator resistance via targeting of prostaglandin I2 synthase. Circulation. 138, 397–411. https://doi.org/10.1161/CIRCULATIONAHA.117.029206
- Li L., Jiang H., Li Y., Guo Y. 2015. Hydrogen sulfide protects spinal cord and induces autophagy via miR-30c in a rat model of spinal cord ischemia-reperfusion injury. J. Biomed. Sci. 22, 50. https://doi.org/10.1186/s12929-015-0135-1
- Toldo S., Das A., Mezzaroma E., Chau V.Q., Marchetti C., Durrant D., Samidurai A., Van Tassell B.W., Yin C., Ockaili R.A., Vigneshwar N., Mukhopadhyay N.D., Kukreja R.C., Abbate A., Salloum F.N. 2014. Induction of MicroRNA-21 with exogenous hydrogen sulfide attenuates myocardial ischemic and inflammatory injury in mice. Circ. Cardiovasc. Genet. 7, 311–320. https://doi.org/10.1161/CIRCGENETICS.113.000381
- Liu Y., Liao S., Quan H., Lin Y., Li J., Yang Q. 2016. Involvement of microRNA-135a-5p in the protective effects of hydrogen sulfide against Parkinson’s disease. Cell. Physiol. Biochem. 40, 18–26. https://doi.org/10.1159/000452521
- Zhang J., Liu W., Wang Y., Zhao S., Chang N. 2017. miR-135b Plays a neuroprotective role by targeting GSK3β in MPP+-intoxicated SH-SY5Y Cells. Dis. Markers. 2017, 5806146. https://doi.org/10.1155/2017/5806146
- Tiedt S., Prestel M., Malik R., Schieferdecker N., Duering M., Kautzky V., Stoycheva I., Böck J., Northoff B.H., Klein M., Dorn F., Krohn K., Teupser D., Liesz A., Plesnila N., Holdt L.M., Dichgans M. 2017. RNA-Seq Identifies Circulating miR-125a-5p, miR-125b-5p, and miR-143-3p as potential biomarkers for acute ischemic stroke. Circ. Res. 121, 970–980. https://doi.org/10.1161/CIRCRESAHA.117.311572
- Shen Y., Shen Z., Guo L., Zhang Q., Wang Z., Miao L., Wang M., Wu J., Guo W., Zhu Y. 2018. MiR-125b-5p is involved in oxygen and glucose deprivation injury in PC-12 cells via CBS/H2S pathway. Nitric Oxide. 78, 11–21. https://doi.org/10.1016/j.niox.2018.05.004
- Zhang Q., Shen Z., Shen Y., Ma M., Jue H., Zhu Y., Guo W. 2022. The regulatory role of MiR-203 in oxidative stress induced cell injury through the CBS/H2S pathway. Nitric Oxide. 118, 31–38. https://doi.org/10.1016/j.niox.2021.10.007
- Chen Z., Zhang Z., Zhang D., Li H., Sun Z. 2016. Hydrogen sulfide protects against TNF-α induced neuronal cell apoptosis through miR-485-5p/TRADD signaling. Biochem. Biophys. Res. Commun. 478, 1304–1309. https://doi.org/10.1016/j.bbrc.2016.08.116
- Chen H.J., Qian L., Li K., Qin Y.Z., Zhou J.J., Ji X.Y., Wu D.D. 2023. Hydrogen sulfide-induced post-translational modification as a potential drug target. Genes Dis. 10, 1870–1882. https://doi.org/10.1016/j.gendis.2022.03.022
- Sobolewski C., Dubuquoy L., Legrand N. 2022. MicroRNAs, tristetraprolin family members and HuR: a complex interplay controlling cancer-related processes. Cancers (Basel). 14, 3516. https://doi.org/10.3390/cancers14143516
- Armstead W.M., Kiessling J.W., Kofke W.A., Vavilala M.S. 2010. SNP improves cerebral hemodynamics during normotension but fails to prevent sex dependent impaired cerebral autoregulation during hypotension after brain injury. Brain Res. 1330, 142–150. https://doi.org/10.1016/j.brainres.2010.03.024
- Nazari Q.A., Mizuno K., Kume T., Takada-Takatori Y., Izumi Y., Akaike A. 2012. In vivo brain oxidative stress model induced by microinjection of sodium nitroprusside in mice. J. Pharmacol. Sci. 120, 105–111. https://doi.org/10.1254/jphs.12143FP
- Bradley S.A., Steinert J.R. 2015. Characterisation and comparison of temporal release profiles of nitric oxide generating donors. J. Neurosci. Methods. 245, 116–124. https://doi.org/10.1016/j.jneumeth.2015.02.024
- Bates J.N., Baker M.T., Guerra R., Harrison D.G. 1991. Nitric oxide generation from nitroprusside by vascular tissue. Biochem. Pharmacol. 42, S157–S165. https://doi.org/10.1016/0006-2952(91)90406-U
- Smith J.N., Dasgupta T.P. 2002. Mechanism of nitric oxide release. I. Two-electron reduction of sodium nitroprusside by l-cysteine in aqueous solution. Inorg. React. Mech. 3, 181–195. https://doi.org/10.1080/10286620210352
- Grossi L., D’Angelo S. 2005. Sodium nitroprusside: mechanism of NO release mediated by sulfhydryl-containing molecules. J. Med. Chem. 48, 2622–2626. https://doi.org/10.1021/jm049857n
- Lu D., Mahmood A., Zhang R., Li Y., Chopp M. 2003. Upregulation of neurogenesis and reduction in functional deficits following administration of DETA/NONOate, a nitric oxide donor, after traumatic brain injury in rats. J. Neurosurg. 99, 351–361. https://doi.org/10.3171/jns.2003.99.2.0351
- Thompson A., Mander P., Brown G. 2009. The NO donor DETA-NONOate reversibly activates an inward current in neurones and is not mediated by the released nitric oxide. Br. J. Pharmacol. 158, 1338–1343. https://doi.org/10.1111/j.1476-5381.2009.00400.x
- Rosenberg P.A., Li Y., Le M., Zhang Y. 2000. Nitric Oxide-stimulated increase in extracellular adenosine accumulation in rat forebrain neurons in culture is associated with ATP hydrolysis and inhibition of adenosine kinase activity. J. Neurosci. 20, 6294–6301. https://doi.org/10.1523/JNEUROSCI.20-16-06294.2000
- Keynes R.G., Griffiths C.H., Hall C., Garthwaite J. 2005. Nitric oxide consumption through lipid peroxidation in brain cell suspensions and homogenates. Biochem. J. 387, 685–694. https://doi.org/10.1042/BJ20041431
- Yoo J., Lee J., Lee C.H. 2010. Characterization of nitric oxide-releasing microparticles for the mucosal delivery. J. Biomed. Mater. Res. Part A. 92A, 1233–1243. https://doi.org/10.1002/jbm.a.32434
- Alencar J.L., Lobysheva I., Chalupsky K., Geffard M., Nepveu F., Stoclet J.C., Muller B. 2003. S-nitrosating nitric oxide donors induce long-lasting inhibition of contraction in isolated arteries. J. Pharmacol. Exp. Ther. 307, 152–159. https://doi.org/10.1124/jpet.103.052605
- Corti A., Franzini M., Scataglini I., Pompella A. 2014. Mechanisms and targets of the modulatory action of S-nitrosoglutathione (GSNO) on inflammatory cytokines expression. Arch. Biochem. Biophys. 562, 80–91. https://doi.org/10.1016/j.abb.2014.08.002
- Liu G., Lu D., Wu J., Wang S., Duan A., Ren Y., Zhang Y., Meng L., Shou R., Li H., Wang Z., Wang Z., Sun X. 2025. Enhancing S-nitrosoglutathione reductase decreases S-nitrosylation of ERO1α and reduces neuronal death in secondary traumatic brain injury. Nitric Oxide. 154, 29–41. https://doi.org/10.1016/j.niox.2024.11.005
- Dong N., Diao Y., Ding M., Cao B., Jiang D. 2017. The effects of 7-nitroindazole on serum neuron-specific enolase and astroglia-derived protein (S100β) levels after traumatic brain injury. Exp. Ther. Med. 13, 3183–3188. https://doi.org/10.3892/etm.2017.4411
- Gürsoy-Özdemir Y., Bolay H., Saribaş O., Dalkara T. 2000. Role of endothelial nitric oxide generation and peroxynitrite formation in reperfusion injury after focal cerebral ischemia. Stroke. 31, 1974–1981. https://doi.org/10.1161/01.STR.31.8.1974
- Lu Y.C., Liu S., Gong Q.Z., Hamm R.J., Lyeth B.G. 1997. Inhibition of nitric oxide synthase potentiates hypertension and increases mortality in traumatically brain-injured rats. Mol. Chem. Neuropathol. 30, 125–137. https://doi.org/10.1007/BF02815154
- Tao R.R., Ji Y.L., Lu Y.M., Fukunaga K., Han F. 2012. Targeting nitrosative stress for neurovascular protection: New implications in brain diseases. Curr. Drug Targets. 13, 272–284. https://doi.org/10.2174/138945012799201649
- Zhang P., Ma L., Yang Z., Li H., Gao Z. 2018. 5,10,15,20-Tetrakis(4-sulfonatophenyl)porphyrinato iron(III) chloride (FeTPPS), a peroxynitrite decomposition catalyst, catalyzes protein tyrosine nitration in the presence of hydrogen peroxide and nitrite. J. Inorg. Biochem. 183, 9–17. https://doi.org/10.1016/j.jinorgbio.2018.03.003
- Seren M., Budak B., Turan N., Parlar A.I., Akar F., Ulus A.T. 2008. Collaborative therapy with nebivalol and l-NAME for spinal cord ischemia/reperfusion injury. Ann. Vasc. Surg. 22, 425–431. https://doi.org/10.1016/j.avsg.2007.12.024
- Corbett J.A., Tilton R.G., Chang K., Hasan K.S., Ido Y., Wang J.L., Sweetland M.A., Lancaster J.R., Williamson J.R., McDaniel M.L. 1992. Aminoguanidine, a novel inhibitor of nitric oxide formation, prevents diabetic vascular dysfunction. Diabetes. 41, 552–556. https://doi.org/10.2337/diab.41.4.552
- Di F., Yan-ting G., Hui L., Tao T., Zai-hua X., Xue-ying S., Hong-li X., Yun-jie W. 2008. Role of aminoguanidine in brain protection in surgical brain injury in rat. Neurosci. Lett. 448, 204–207. https://doi.org/10.1016/j.neulet.2008.10.038
- Fan Z., Wang Y., Cao Y., Zhang M., Zhang Z., Lv G., Lu W., Zhang Y. 2010. The effect of aminoguanidine on compression spinal cord injury in rats. Brain Res. 1342, 1–10. https://doi.org/10.1016/j.brainres.2010.04.038
- Hall C.N., Garthwaite J. 2009. What is the real physiological NO concentration in vivo? Nitric Oxide. 21, 92–103. https://doi.org/10.1016/j.niox.2009.07.002
- Xu K., Wu F., Xu K., Li Z., Wei X., Lu Q, Jiang T., Wu F., Xu X., Xiao J., Chen D., Zhang H. 2018. NaHS restores mitochondrial function and inhibits autophagy by activating the PI3K/Akt/mTOR signalling pathway to improve functional recovery after traumatic brain injury. Chem. Biol. Interact. 286, 96–105. https://doi.org/10.1016/j.cbi.2018.02.028
- Wang J., Zhang N., Liu H.Z., Wang J.L., Zhang Y.B., Su D.D., Zhang L.M., Li B.D., Miao H.T., Miao J. 2025. NaHS alleviates neuropathic pain in mice by inhibiting IL-17-mediated dopamine (DA) neuron necroptosis in the VTA. Brain Res. Bull. 220, 111168. https://doi.org/10.1016/j.brainresbull.2024.111168
- Cheung N.S., Peng Z.F., Chen M.J., Moore P.K., Whiteman M. 2007. Hydrogen sulfide induced neuronal death occurs via glutamate receptor and is associated with calpain activation and lysosomal rupture in mouse primary cortical neurons. Neuropharmacology. 53, 505–514. https://doi.org/10.1016/j.neuropharm.2007.06.014
- Bourdeaux C., Brown J. 2010. Effect of 8.4% sodium bicarbonate on raised intracranial pressure after traumatic brain injury. Crit. Care. 14, P290. https://doi.org/10.1186/cc8522
- Lazarević M., Mazzon E., Momčilović M., Basile M.S., Colletti G., Petralia M.C., Bramanti P., Nicoletti F., Miljković Đ. 2018. The H2S Donor GYY4137 stimulates reactive oxygen species generation in BV2 cells while suppressing the secretion of TNF and Nitric Oxide. Molecules. 23, 2966. https://doi.org/10.3390/molecules23112966
- Jia J., Xiao Y., Wang W., Qing L., Xu Y., Song H., Zhen X., Ao G., Alkayed N.J., Cheng J. 2013. Differential mechanisms underlying neuroprotection of hydrogen sulfide donors against oxidative stress. Neurochem. Int. 62, 1072–1078. https://doi.org/10.1016/j.neuint.2013.04.001
- Wei S., Zou M., Huan J., Li D., Zhang P., Lu M., Xiong J., Ma Y. 2022. Role of the hydrogen sulfide-releasing donor ADT-OH in the regulation of mammal neural precursor cells. J. Cell. Physiol. 237, 2877–2887. https://doi.org/10.1002/jcp.30726
- Zhang J., Li S., Yang Z., Liu C., Chen X., Zhang Y., Zhang F., Shi H., Chen X., Tao L., Shan H., Zhang M. 2022. Implantation of injectable SF hydrogel with sustained hydrogen sulfide delivery reduces neuronal pyroptosis and enhances functional recovery after severe intracerebral hemorrhage. Biomater. Adv. 135, 212743. https://doi.org/10.1016/j.bioadv.2022.212743
- Wang R., Wu X.X., Tian Z., Hu T., Cai C., Wu G.P., Jiang G.B., Liu B. 2023. Sustained release of hydrogen sulfide from anisotropic ferrofluid hydrogel for the repair of spinal cord injury. Bioact. Mater. 23, 118–128. https://doi.org/10.1016/j.bioactmat.2022.10.020
- Asimakopoulou A., Panopoulos P., Chasapis C., Coletta C., Zhou Z., Cirino G., Giannis A., Szabo C., Spyroulias G.A., Papapetropoulos A. 2013. Selectivity of commonly used pharmacological inhibitors for cystathionine β synthase (CBS) and cystathionine γ lyase (CSE). Br. J. Pharmacol. 169, 922–932. https://doi.org/10.1111/bph.12171
- Du F., Eid T., Schwarcz R. 1997. Neuronal damage after the injection of amino-oxyacetic acid into the rat entorhinal cortex: A silver impregnation study. Neuroscience. 82, 1165–1178. https://doi.org/10.1016/S0306-4522(97)00354-0
- Suzuki T., Okamoto Y., Sekikawa T., Nemoto T., Moriya H., Murayama S., Nakaya H. 1995. Effects of GABAergic drugs on the recovery of reflex potentials after spinal cord ischemia in cats. Jpn. J. Pharmacol. 68, 423–429. https://doi.org/10.1254/jjp.68.423
- Gui Y., Li A., Qiu B., Chen F., Chen L., Liu D., Chen S., Zhou W., Zhou H. 2016. Endogenous CBS–H2S pathway contributes to the development of CCI-induced neuropathic pain. Neurochem. Res. 41, 1381–1389. https://doi.org/10.1007/s11064-016-1842-z
补充文件

