Резистентность к действию антрациклинов CD33+-клеток острого миелоидного лейкоза в трехмерных культурах
- Авторы: Краснов К.С.1,2, Мещерякова Е.И.1,3, Ломовская Я.В.1, Фадеева И.С.1, Кобякова М.И.1, Фадеев Р.С.1
-
Учреждения:
- Институт теоретической и экспериментальной биофизики РАН
- Институт клинической и экспериментальной лимфологии – филиал ИЦИГ СО РАН
- Институт биофизики клетки РАН
- Выпуск: Том 42, № 5 (2025)
- Страницы: 382-394
- Раздел: ***
- URL: https://journal-vniispk.ru/0233-4755/article/view/353191
- DOI: https://doi.org/10.31857/S0233475525050032
- ID: 353191
Цитировать
Аннотация
Выявление механизмов лекарственной устойчивости клеток острого миелоидного лейкоза (ОМЛ) остается важной задачей для биомедицины и онкогематологии. В наших ранних работах при использовании постоянных клеточных линий было показано повышение лекарственной устойчивости клеток ОМЛ в составе трехмерных многоклеточных культур. В данном исследовании с помощью методов проточной цитометрии и спектрофлуометрии мы обнаружили повышение устойчивости первичных CD33+-клеток ОМЛ к цитотоксическому действию антрациклинов в трехмерных многоклеточных культурах, которое сопровождалось подавлением проапоптотического сигнального пути, увеличением доли клеток в G0/G1-фазе клеточного цикла и повышением содержания антиапоптотического белка Bcl-2.
Об авторах
К. С. Краснов
Институт теоретической и экспериментальной биофизики РАН; Институт клинической и экспериментальной лимфологии – филиал ИЦИГ СО РАН
Email: kobyakovami@gmail.com
Пущино, 142290 Россия; Новосибирск, 630060 Россия
Е. И. Мещерякова
Институт теоретической и экспериментальной биофизики РАН; Институт биофизики клетки РАН
Email: kobyakovami@gmail.com
Пущино, 142290 Россия; Пущино, 142290 Россия
Я. В. Ломовская
Институт теоретической и экспериментальной биофизики РАН
Email: kobyakovami@gmail.com
Пущино, 142290 Россия
И. С. Фадеева
Институт теоретической и экспериментальной биофизики РАН
Email: kobyakovami@gmail.com
Пущино, 142290 Россия
М. И. Кобякова
Институт теоретической и экспериментальной биофизики РАН
Email: kobyakovami@gmail.com
Пущино, 142290 Россия
Р. С. Фадеев
Институт теоретической и экспериментальной биофизики РАН
Автор, ответственный за переписку.
Email: kobyakovami@gmail.com
Пущино, 142290 Россия
Список литературы
- Shimony S., Stahl M., Stone R.M. 2023. Acute myeloid leukemia: 2023 update on diagnosis, risk-stratification, and management. Am. J. Hematol. 98, 502–526. https://doi.org/10.1002/ajh.26822
- Kantarjian H., Borthakur G., Daver N., DiNardo C.D., Issa G., Jabbour E., Kadia T., Sasaki K., Short N.J., Yilmaz M., Ravandi F. 2024. Current status and research directions in acute myeloid leukemia. Blood Cancer J. 14, 163. https://doi.org/10.1038/s41408-024-01143-2
- Culver-Cochran A.E., Hassan A., Hueneman K., Choi K., Ma A., VanCauwenbergh B., O'Brien E., Wunderlich M., Perentesis J.P., Starczynowski D.T. 2024. Chemotherapy resistance in acute myeloid leukemia is mediated by A20 suppression of spontaneous necroptosis. Nat. Commun. 15, 9189. https://doi.org/10.1038/s41467-024-53629-z
- Hagiya A., Vaidya P., Khedro T., Yaghmour B., Siddiqi I., Yaghmour G. 2019. Bone marrow features in patients with acute myeloid leukemia treated with novel targeted isocitrate dehydrogenase 1/2 inhibitors. World J. Oncol. 10, 226–230. https://doi.org/10.14740/wjon1231
- Tuzuner N., Cox C., Rowe J.M., Bennett J.M. 1994. Bone marrow cellularity in myeloid stem cell disorders: Impact of age correction. Leuk. Res. 18, 559–564. https://doi.org/10.1016/0145-2126(94)90036-1
- Chen M., Kim Y., Huang Q., Chang K., Gaal K.K., Weiss L.M. 2011. Acute myeloid leukemia with an unusual histologic pattern mimicking metastatic carcinoma in bone marrow: a diagnostic pitfall. J. Hematopathol. 4, 117–122. https://doi.org/10.1007/s12308-011-0090-z
- Helbig D., Quesada A.E., Xiao W., Roshal M., Tallman M.S., Knorr D.A. 2020. Spontaneous remission in a patient with acute myeloid leukemia leading to undetectable minimal residual disease. J. Hematol. 9, 18–22. https://doi.org/10.14740/jh606
- Islam A. 2024. AML-097 Induction treatment of acute myeloid leukemia in an elderly patient with intra-marrow injection of cytarabine (Ara-C). Clin. Lymphoma Myeloma Leuk. 24, 293. https://doi.org/10.1016/S2152-2650(24)01158-3
- Vucetic M., Daher B., Cassim S., Meira W., Pouyssegur J. 2020. Together we stand, apart we fall: How cell-to-cell contact/interplay provides resistance to ferroptosis. Cell Death Dis. 11, 789. https://doi.org/10.1038/s41419-020-02994-w
- Gujral T.S., Kirschner M.W. 2017. Hippo pathway mediates resistance to cytotoxic drugs. Proc. Natl. Acad. Sci. 114, E3729–E3738. https://doi.org/10.1073/pnas.1703096114
- Kobyakova M., Lomovskaya Y., Senotov A., Lomovsky A., Minaychev V., Fadeeva I., Shtatnova D., Krasnov K., Zvyagina A., Odinokova I., Akatov V., Fadeev R. 2022. The increase in the drug resistance of acute myeloid leukemia THP-1 cells in high-density cell culture is associated with inflammatory-like activation and anti-apoptotic Bcl-2 proteins. Int. J. Mol. Sci. 23, 7881. https://doi.org/10.3390/ijms23147881
- Kobyakova M., Lomovskaya Y., Senotov A., Lomovsky A., Minaichev V., Zvyagina A., Solovieva M., Fadeeva I., Akatov V., Fadeev R. 2021. Appearance of signs of differentiation and pro-inflammatory phenotype in acute myeloid leukemia cells THP-1 with an increase in their TRAIL resistance in cell aggregates in vitro. Biochemistry (Mosc.) Suppl. Ser. A. 15, 97–105. https://doi.org/10.1134/S1990747821010050
- Azharuddin M., Roberg K., Dhara A.K., Jain M.V., Darcy P., Hinkula J., Slater N.K.H., Patra H.K. 2019. Dissecting multi drug resistance in head and neck cancer cells using multicellular tumor spheroids. Sci. Rep. 9, 20066. https://doi.org/10.1038/s41598-019-56273-6
- Sayo K., Aoki S., Kojima N. 2016. Fabrication of bone marrow-like tissue in vitro from dispersed-state bone marrow cells. Regen. Ther. 3, 32–37. https://doi.org/10.1016/j.reth.2016.01.008
- Kobyakova M., Senotov A., Krasnov K., Lomovskaya Y., Odinokova I., Kolotova A., Ermakov A., Zvyagina A., Fadeeva I., Fetisova E., Akatov V., Fadeev R. 2024. Pro-inflammatory activation suppresses TRAIL-induced apoptosis of acute myeloid leukemia cells. Biochemistry (Mosc.). 89, 431–440. https://doi.org/10.1134/S0006297924030040
- Ueno M., Kakinuma Y., Yuhki K., Murakoshi N., Iemitsu M., Miyauchi T., Yamaguchi I. 2006. Doxorubicin induces apoptosis by activation of caspase-3 in cultured cardiomyocytes in vitro and rat cardiac ventricles in vivo. J. Pharmacol. Sci. 101, 151–158. https://doi.org/10.1254/jphs.fp0050980
- Gomes M.T., Palasiewicz K., Gadiyar V., Lahey K., Calianese D., Birge R.B., Ucker D.S. 2022. Phosphatidylserine externalization by apoptotic cells is dispensable for specific recognition leading to innate apoptotic immune responses. J. Biol. Chem. 298, 102034. https://doi.org/10.1016/j.jbc.2022.102034
- Grantab R., Sivananthan S., Tannock I.F. 2006. The penetration of anticancer drugs through tumor tissue as a function of cellular adhesion and packing density of tumor cells. Cancer Res. 66, 1033–1039. https://doi.org/10.1158/0008-5472.CAN-05-3077
- Nowacka M., Sterzynska K., Andrzejewska M., Nowicki M., Januchowski R. 2021. Drug resistance evaluation in novel 3D in vitro model. Biomed. Pharmacother. 138, 111536. https://doi.org/10.1016/j.biopha.2021.111536
- Duchrow M., Schlüter C., Key G., Kubbutat M.H., Wohlenberg C., Flad H.D., Gerdes J. 1995. Cell proliferation-associated nuclear antigen defined by antibody Ki-67: a new kind of cell cycle-maintaining proteins. Arch. Immunol. Ther. Exp. 43, 117–121.
- Srivastava R.K., Sasaki C.Y., Hardwick J.M., Longo D.L. 1999. Bcl-2-mediated drug resistance: inhibition of apoptosis by blocking nuclear factor of activated T lymphocytes (NFAT)-induced Fas ligand transcription. J. Exp. Med. 190, 253–265. https://doi.org/10.1084/jem.190.2.253
- Raisova M., Hossini A.M., Eberle J., Riebeling C., Wieder T., Sturm I., Daniel P.T., Orfanos C.E., Geilen C.C. 2001. The Bax/Bcl-2 ratio determines the susceptibility of human melanoma cells to CD95/Fas-mediated apoptosis. J. Invest. Dermatol. 117, 333–340. https://doi.org/10.1046/j.0022-202x.2001.01409.x
- Rajput D., Naval R., Yadav K., Tungaria A., Behari S. 2010. Bilateral proptosis and bitemporal swelling: A rare manifestation of acute myeloid leukemia. J. Pediatr. Neurosci. 5, 68–71. https://doi.org/10.4103/1817-1745.66687
- Choi C.H. 2005. ABC transporters as multidrug resistance mechanisms and the development of chemosensitizers for their reversal. Cancer Cell Int. 5, 30. https://doi.org/10.1186/1475-2867-5-30
- Salvia A.M., Cuviello F., Coluzzi S., Nuccorini R., Attolico I., Pascale S.P., Bisaccia F., Pizzuti M., Ostuni A. 2017. Expression of some ATP-binding cassette transporters in acute myeloid leukemia. Hematol. Rep. 9, 7406. https://doi.org/10.4081/hr.2017.7406
- Callaghan R., Luk F., Bebawy M. 2014. Inhibition of the multidrug resistance P-glycoprotein: time for a change of strategy? Drug Metab. Dispos. 42, 623–631. https://doi.org/10.1124/dmd.113.056176
- Demel H.R., Feuerecker B., Piontek G., Seidl C., Blechert B., Pickhard A., Essler M. 2015. Effects of topoisomerase inhibitors that induce DNA damage response on glucose metabolism and PI3K/Akt/mTOR signaling in multiple myeloma cells. Am. J. Cancer Res. 5, 1649–1664.
- Feeney G.P., Errington R.J., Wiltshire M., Marquez N., Chappell S.C., Smith P.J. 2003. Tracking the cell cycle origins for escape from topotecan action by breast cancer cells. Br. J. Cancer. 88, 1310–1317. https://doi.org/10.1038/sj.bjc.6600889
- Gross S.M., Mohammadi F., Sanchez-Aguila C., Zhan P.J., Liby T.A., Dane M.A., Meyer A.S., Heiser L.M. 2023. Analysis and modeling of cancer drug responses using cell cycle phase-specific rate effects. Nat. Commun. 14, 3450. https://doi.org/10.1038/s41467-023-39122-z
- Sun Y., Liu Y., Ma X., Hu H. 2021. The Influence of cell cycle regulation on chemotherapy. Int. J. Mol. Sci. 22, 6923. https://doi.org/10.3390/ijms22136923
- Langevin P.B., Atlee J.L. 2007. Chemotherapeutic Agents. In: Complications in Anesthesia. Ed. Langevin P.B. p. 110–118. https://doi.org/10.1016/b978-1-4160-2215-2.50035-1
- Feng W., Wang Q., Tan Y., Qiao J., Liu Q., Yang B., Yang S., Cui L. 2025. Early detection of anthracycline-induced cardiotoxicity. Clin. Chim. Acta. 565, 120000. https://doi.org/10.1016/j.cca.2024.120000
- Kaloni D., Diepstraten S.T., Strasser A., Kelly G.L. 2023. BCL-2 protein family: attractive targets for cancer therapy. Apoptosis. 28, 20–38. https://doi.org/10.1007/s10495-022-01780-7
- Klymenko T., Brandenburg M., Morrow C., Dive C., Makin G. 2011. The novel Bcl-2 inhibitor ABT-737 is more effective in hypoxia and is able to reverse hypoxia-induced drug resistance in neuroblastoma cells. Mol. Cancer Ther. 10, 2373–2383. https://doi.org/10.1158/1535-7163.MCT-11-0326
- Ugarenko M., Nudelman A., Rephaeli A., Kimura K., Phillips D.R., Cutts S.M. 2010. ABT-737 overcomes Bcl-2 mediated resistance to doxorubicin-DNA adducts. Biochem. Pharmacol. 79, 339–349. https://doi.org/10.1016/j.bcp.2009.09.004
- Diepstraten S.T., Young S., La Marca J.E., Wang Z., Kluck R.M., Strasser A., Kelly G.L. 2023. Lymphoma cells lacking pro-apoptotic BAX are highly resistant to BH3-mimetics targeting pro-survival MCL-1 but retain sensitivity to conventional DNA-damaging drugs. Cell Death Differ. 30, 1005–1017. https://doi.org/10.1038/s41418-023-01117-0
- Jiang Y., Fang B., Xu B., Chen L. 2020. The RAS-PI3K-AKT-NF-κB pathway transcriptionally regulates the expression of BCL2 family and IAP family genes and inhibits apoptosis in fibrous epulis. J. Clin. Lab. Anal. 34, e23102. https://doi.org/10.1002/jcla.23102
- Yang T., Wang S., Yang X., Zheng Q., Wang L., Li Q., Wei M., Du Z., Fan Y. 2017. Upregulation of Bcl-2 and its promoter signals in CD4+ T cells during neuromyelitis optica remission. Front. Neurosci. 11, 11. https://doi.org/10.3389/fnins.2017.00011
- Luciano M., Krenn P.W., Horejs-Hoeck J. 2022. The cytokine network in acute myeloid leukemia. Front. Immunol. 13, 1000996. https://doi.org/10.3389/fimmu.2022.1000996
- Binder S., Luciano M., Horejs-Hoeck J. 2018. The cytokine network in acute myeloid leukemia (AML): A focus on pro- and anti-inflammatory mediators. Cytokine Growth Factor Rev. 43, 8–15. https://doi.org/10.1016/j.cytogfr.2018.08.004
- Reuss-Borst M.A., Klein G., Waller H.D., Müller C.A. 1995. Differential expression of adhesion molecules in acute leukemia. Leukemia 9, 869–874.
- Shi C., Zhang X., Chen Z., Robinson M.K., Simon D.I. 2001. Leukocyte integrin Mac-1 recruits toll/interleukin-1 receptor superfamily signaling intermediates to modulate NF-κB activity. Circ. Res. 89, 859–865. https://doi.org/10.1161/hh2201.099166
- Lebedeva T., Dustin M.L., Sykulev Y. 2005. ICAM-1 co-stimulates target cells to facilitate antigen presentation. Curr. Opin. Immunol. 17, 251–258. https://doi.org/10.1016/j.coi.2005.04.008
- Verma N.K., Kelleher D. 2014. Adaptor regulation of LFA-1 signaling in T lymphocyte migration: Potential druggable targets for immunotherapies? Eur. J. Immunol. 44, 3484–3499. https://doi.org/10.1002/eji.201344428
Дополнительные файлы


