Resistance to anthracyclines of CD33+ acute myeloid leukemia cells grown in three-dimensional culture
- Авторлар: Krasnov K.S.1,2, Mescheryakova E.I.1,3, Lomovskaya Y.V.1, Fadeeva I.S.1, Kobyakova M.I.1, Fadeev R.S.1
-
Мекемелер:
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences
- Institute of Clinical and Experimental Lymphology, Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences
- Institute of Cell Biophysics, Russian Academy of Sciences
- Шығарылым: Том 42, № 5 (2025)
- Беттер: 382-394
- Бөлім: ***
- URL: https://journal-vniispk.ru/0233-4755/article/view/353191
- DOI: https://doi.org/10.31857/S0233475525050032
- ID: 353191
Дәйексөз келтіру
Аннотация
Identification of the mechanisms of drug resistance of acute myeloid leukemia (AML) cells remains an important task for biomedicine and oncohematology. In our earlier work, using permanent cell lines, we showed that AML cells in 3D multicellular cultures had higher drug resistance. In this study, using flow cytometry and spectrofluometry, we found an increase in the resistance of primary CD33+ AML cells, grown in three-dimensional multicellular aggregates, to the cytotoxic effects of anthracyclines, which was accompanied by suppression of the pro-apoptotic signaling pathway, partial accumulation of cells in the G0/G1 phase of the cell cycle, and an increase in the content of the anti-apoptotic protein Bcl-2.
Авторлар туралы
K. Krasnov
Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences; Institute of Clinical and Experimental Lymphology, Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences
Email: kobyakovami@gmail.com
Pushchino, 142290 Russia; Novosibirsk, 630060 Russia
E. Mescheryakova
Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences; Institute of Cell Biophysics, Russian Academy of Sciences
Email: kobyakovami@gmail.com
Pushchino, 142290 Russia; Pushchino, 142290 Russia
Ya. Lomovskaya
Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences
Email: kobyakovami@gmail.com
Pushchino, 142290 Russia
I. Fadeeva
Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences
Email: kobyakovami@gmail.com
Pushchino, 142290 Russia
M. Kobyakova
Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences
Email: kobyakovami@gmail.com
Pushchino, 142290 Russia
R. Fadeev
Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences
Хат алмасуға жауапты Автор.
Email: kobyakovami@gmail.com
Pushchino, 142290 Russia
Әдебиет тізімі
- Shimony S., Stahl M., Stone R.M. 2023. Acute myeloid leukemia: 2023 update on diagnosis, risk-stratification, and management. Am. J. Hematol. 98, 502–526. https://doi.org/10.1002/ajh.26822
- Kantarjian H., Borthakur G., Daver N., DiNardo C.D., Issa G., Jabbour E., Kadia T., Sasaki K., Short N.J., Yilmaz M., Ravandi F. 2024. Current status and research directions in acute myeloid leukemia. Blood Cancer J. 14, 163. https://doi.org/10.1038/s41408-024-01143-2
- Culver-Cochran A.E., Hassan A., Hueneman K., Choi K., Ma A., VanCauwenbergh B., O'Brien E., Wunderlich M., Perentesis J.P., Starczynowski D.T. 2024. Chemotherapy resistance in acute myeloid leukemia is mediated by A20 suppression of spontaneous necroptosis. Nat. Commun. 15, 9189. https://doi.org/10.1038/s41467-024-53629-z
- Hagiya A., Vaidya P., Khedro T., Yaghmour B., Siddiqi I., Yaghmour G. 2019. Bone marrow features in patients with acute myeloid leukemia treated with novel targeted isocitrate dehydrogenase 1/2 inhibitors. World J. Oncol. 10, 226–230. https://doi.org/10.14740/wjon1231
- Tuzuner N., Cox C., Rowe J.M., Bennett J.M. 1994. Bone marrow cellularity in myeloid stem cell disorders: Impact of age correction. Leuk. Res. 18, 559–564. https://doi.org/10.1016/0145-2126(94)90036-1
- Chen M., Kim Y., Huang Q., Chang K., Gaal K.K., Weiss L.M. 2011. Acute myeloid leukemia with an unusual histologic pattern mimicking metastatic carcinoma in bone marrow: a diagnostic pitfall. J. Hematopathol. 4, 117–122. https://doi.org/10.1007/s12308-011-0090-z
- Helbig D., Quesada A.E., Xiao W., Roshal M., Tallman M.S., Knorr D.A. 2020. Spontaneous remission in a patient with acute myeloid leukemia leading to undetectable minimal residual disease. J. Hematol. 9, 18–22. https://doi.org/10.14740/jh606
- Islam A. 2024. AML-097 Induction treatment of acute myeloid leukemia in an elderly patient with intra-marrow injection of cytarabine (Ara-C). Clin. Lymphoma Myeloma Leuk. 24, 293. https://doi.org/10.1016/S2152-2650(24)01158-3
- Vucetic M., Daher B., Cassim S., Meira W., Pouyssegur J. 2020. Together we stand, apart we fall: How cell-to-cell contact/interplay provides resistance to ferroptosis. Cell Death Dis. 11, 789. https://doi.org/10.1038/s41419-020-02994-w
- Gujral T.S., Kirschner M.W. 2017. Hippo pathway mediates resistance to cytotoxic drugs. Proc. Natl. Acad. Sci. 114, E3729–E3738. https://doi.org/10.1073/pnas.1703096114
- Kobyakova M., Lomovskaya Y., Senotov A., Lomovsky A., Minaychev V., Fadeeva I., Shtatnova D., Krasnov K., Zvyagina A., Odinokova I., Akatov V., Fadeev R. 2022. The increase in the drug resistance of acute myeloid leukemia THP-1 cells in high-density cell culture is associated with inflammatory-like activation and anti-apoptotic Bcl-2 proteins. Int. J. Mol. Sci. 23, 7881. https://doi.org/10.3390/ijms23147881
- Kobyakova M., Lomovskaya Y., Senotov A., Lomovsky A., Minaichev V., Zvyagina A., Solovieva M., Fadeeva I., Akatov V., Fadeev R. 2021. Appearance of signs of differentiation and pro-inflammatory phenotype in acute myeloid leukemia cells THP-1 with an increase in their TRAIL resistance in cell aggregates in vitro. Biochemistry (Mosc.) Suppl. Ser. A. 15, 97–105. https://doi.org/10.1134/S1990747821010050
- Azharuddin M., Roberg K., Dhara A.K., Jain M.V., Darcy P., Hinkula J., Slater N.K.H., Patra H.K. 2019. Dissecting multi drug resistance in head and neck cancer cells using multicellular tumor spheroids. Sci. Rep. 9, 20066. https://doi.org/10.1038/s41598-019-56273-6
- Sayo K., Aoki S., Kojima N. 2016. Fabrication of bone marrow-like tissue in vitro from dispersed-state bone marrow cells. Regen. Ther. 3, 32–37. https://doi.org/10.1016/j.reth.2016.01.008
- Kobyakova M., Senotov A., Krasnov K., Lomovskaya Y., Odinokova I., Kolotova A., Ermakov A., Zvyagina A., Fadeeva I., Fetisova E., Akatov V., Fadeev R. 2024. Pro-inflammatory activation suppresses TRAIL-induced apoptosis of acute myeloid leukemia cells. Biochemistry (Mosc.). 89, 431–440. https://doi.org/10.1134/S0006297924030040
- Ueno M., Kakinuma Y., Yuhki K., Murakoshi N., Iemitsu M., Miyauchi T., Yamaguchi I. 2006. Doxorubicin induces apoptosis by activation of caspase-3 in cultured cardiomyocytes in vitro and rat cardiac ventricles in vivo. J. Pharmacol. Sci. 101, 151–158. https://doi.org/10.1254/jphs.fp0050980
- Gomes M.T., Palasiewicz K., Gadiyar V., Lahey K., Calianese D., Birge R.B., Ucker D.S. 2022. Phosphatidylserine externalization by apoptotic cells is dispensable for specific recognition leading to innate apoptotic immune responses. J. Biol. Chem. 298, 102034. https://doi.org/10.1016/j.jbc.2022.102034
- Grantab R., Sivananthan S., Tannock I.F. 2006. The penetration of anticancer drugs through tumor tissue as a function of cellular adhesion and packing density of tumor cells. Cancer Res. 66, 1033–1039. https://doi.org/10.1158/0008-5472.CAN-05-3077
- Nowacka M., Sterzynska K., Andrzejewska M., Nowicki M., Januchowski R. 2021. Drug resistance evaluation in novel 3D in vitro model. Biomed. Pharmacother. 138, 111536. https://doi.org/10.1016/j.biopha.2021.111536
- Duchrow M., Schlüter C., Key G., Kubbutat M.H., Wohlenberg C., Flad H.D., Gerdes J. 1995. Cell proliferation-associated nuclear antigen defined by antibody Ki-67: a new kind of cell cycle-maintaining proteins. Arch. Immunol. Ther. Exp. 43, 117–121.
- Srivastava R.K., Sasaki C.Y., Hardwick J.M., Longo D.L. 1999. Bcl-2-mediated drug resistance: inhibition of apoptosis by blocking nuclear factor of activated T lymphocytes (NFAT)-induced Fas ligand transcription. J. Exp. Med. 190, 253–265. https://doi.org/10.1084/jem.190.2.253
- Raisova M., Hossini A.M., Eberle J., Riebeling C., Wieder T., Sturm I., Daniel P.T., Orfanos C.E., Geilen C.C. 2001. The Bax/Bcl-2 ratio determines the susceptibility of human melanoma cells to CD95/Fas-mediated apoptosis. J. Invest. Dermatol. 117, 333–340. https://doi.org/10.1046/j.0022-202x.2001.01409.x
- Rajput D., Naval R., Yadav K., Tungaria A., Behari S. 2010. Bilateral proptosis and bitemporal swelling: A rare manifestation of acute myeloid leukemia. J. Pediatr. Neurosci. 5, 68–71. https://doi.org/10.4103/1817-1745.66687
- Choi C.H. 2005. ABC transporters as multidrug resistance mechanisms and the development of chemosensitizers for their reversal. Cancer Cell Int. 5, 30. https://doi.org/10.1186/1475-2867-5-30
- Salvia A.M., Cuviello F., Coluzzi S., Nuccorini R., Attolico I., Pascale S.P., Bisaccia F., Pizzuti M., Ostuni A. 2017. Expression of some ATP-binding cassette transporters in acute myeloid leukemia. Hematol. Rep. 9, 7406. https://doi.org/10.4081/hr.2017.7406
- Callaghan R., Luk F., Bebawy M. 2014. Inhibition of the multidrug resistance P-glycoprotein: time for a change of strategy? Drug Metab. Dispos. 42, 623–631. https://doi.org/10.1124/dmd.113.056176
- Demel H.R., Feuerecker B., Piontek G., Seidl C., Blechert B., Pickhard A., Essler M. 2015. Effects of topoisomerase inhibitors that induce DNA damage response on glucose metabolism and PI3K/Akt/mTOR signaling in multiple myeloma cells. Am. J. Cancer Res. 5, 1649–1664.
- Feeney G.P., Errington R.J., Wiltshire M., Marquez N., Chappell S.C., Smith P.J. 2003. Tracking the cell cycle origins for escape from topotecan action by breast cancer cells. Br. J. Cancer. 88, 1310–1317. https://doi.org/10.1038/sj.bjc.6600889
- Gross S.M., Mohammadi F., Sanchez-Aguila C., Zhan P.J., Liby T.A., Dane M.A., Meyer A.S., Heiser L.M. 2023. Analysis and modeling of cancer drug responses using cell cycle phase-specific rate effects. Nat. Commun. 14, 3450. https://doi.org/10.1038/s41467-023-39122-z
- Sun Y., Liu Y., Ma X., Hu H. 2021. The Influence of cell cycle regulation on chemotherapy. Int. J. Mol. Sci. 22, 6923. https://doi.org/10.3390/ijms22136923
- Langevin P.B., Atlee J.L. 2007. Chemotherapeutic Agents. In: Complications in Anesthesia. Ed. Langevin P.B. p. 110–118. https://doi.org/10.1016/b978-1-4160-2215-2.50035-1
- Feng W., Wang Q., Tan Y., Qiao J., Liu Q., Yang B., Yang S., Cui L. 2025. Early detection of anthracycline-induced cardiotoxicity. Clin. Chim. Acta. 565, 120000. https://doi.org/10.1016/j.cca.2024.120000
- Kaloni D., Diepstraten S.T., Strasser A., Kelly G.L. 2023. BCL-2 protein family: attractive targets for cancer therapy. Apoptosis. 28, 20–38. https://doi.org/10.1007/s10495-022-01780-7
- Klymenko T., Brandenburg M., Morrow C., Dive C., Makin G. 2011. The novel Bcl-2 inhibitor ABT-737 is more effective in hypoxia and is able to reverse hypoxia-induced drug resistance in neuroblastoma cells. Mol. Cancer Ther. 10, 2373–2383. https://doi.org/10.1158/1535-7163.MCT-11-0326
- Ugarenko M., Nudelman A., Rephaeli A., Kimura K., Phillips D.R., Cutts S.M. 2010. ABT-737 overcomes Bcl-2 mediated resistance to doxorubicin-DNA adducts. Biochem. Pharmacol. 79, 339–349. https://doi.org/10.1016/j.bcp.2009.09.004
- Diepstraten S.T., Young S., La Marca J.E., Wang Z., Kluck R.M., Strasser A., Kelly G.L. 2023. Lymphoma cells lacking pro-apoptotic BAX are highly resistant to BH3-mimetics targeting pro-survival MCL-1 but retain sensitivity to conventional DNA-damaging drugs. Cell Death Differ. 30, 1005–1017. https://doi.org/10.1038/s41418-023-01117-0
- Jiang Y., Fang B., Xu B., Chen L. 2020. The RAS-PI3K-AKT-NF-κB pathway transcriptionally regulates the expression of BCL2 family and IAP family genes and inhibits apoptosis in fibrous epulis. J. Clin. Lab. Anal. 34, e23102. https://doi.org/10.1002/jcla.23102
- Yang T., Wang S., Yang X., Zheng Q., Wang L., Li Q., Wei M., Du Z., Fan Y. 2017. Upregulation of Bcl-2 and its promoter signals in CD4+ T cells during neuromyelitis optica remission. Front. Neurosci. 11, 11. https://doi.org/10.3389/fnins.2017.00011
- Luciano M., Krenn P.W., Horejs-Hoeck J. 2022. The cytokine network in acute myeloid leukemia. Front. Immunol. 13, 1000996. https://doi.org/10.3389/fimmu.2022.1000996
- Binder S., Luciano M., Horejs-Hoeck J. 2018. The cytokine network in acute myeloid leukemia (AML): A focus on pro- and anti-inflammatory mediators. Cytokine Growth Factor Rev. 43, 8–15. https://doi.org/10.1016/j.cytogfr.2018.08.004
- Reuss-Borst M.A., Klein G., Waller H.D., Müller C.A. 1995. Differential expression of adhesion molecules in acute leukemia. Leukemia 9, 869–874.
- Shi C., Zhang X., Chen Z., Robinson M.K., Simon D.I. 2001. Leukocyte integrin Mac-1 recruits toll/interleukin-1 receptor superfamily signaling intermediates to modulate NF-κB activity. Circ. Res. 89, 859–865. https://doi.org/10.1161/hh2201.099166
- Lebedeva T., Dustin M.L., Sykulev Y. 2005. ICAM-1 co-stimulates target cells to facilitate antigen presentation. Curr. Opin. Immunol. 17, 251–258. https://doi.org/10.1016/j.coi.2005.04.008
- Verma N.K., Kelleher D. 2014. Adaptor regulation of LFA-1 signaling in T lymphocyte migration: Potential druggable targets for immunotherapies? Eur. J. Immunol. 44, 3484–3499. https://doi.org/10.1002/eji.201344428
Қосымша файлдар

