CORROSION OF 10CRNI45AL ALLOY IN AN OXIDIZING GAS ATMOSPHERE

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

One of the basic technological operations of the currently developed pyrochemical technology for reprocessing spent nitride nuclear fuel from fastneutron reactors (SNF RBN) is high-temperature treatment (HTT) in a gas environment. The aim of the work was to study the effect of oxygen-containing gas environments: a dry mixture of Ar-20 vol. % O2 and a mixture of Ar-20 vol. % O2, with 60% humidity for the degradation of 10CrNi45Al alloy, a candidate material for the manufacture of the HTT apparatus. Corrosion tests lasting up to 1000 hours were carried out at 500°C. It was established by the X-ray diffraction method that the main corrosion products formed on the surface of samples kept in a dry gas atmosphere are Al2O3, Fe2O3 and NiFe2O4. The presence of moisture in the gas environment contributes to the formation of NiO and NiСrO4. In a dry gas mixture, an outer layer is observed on the surface of the sample, which is individual fragments of corrosion products: oxide compounds of iron, chromium, nickel. The surface of the material is covered with a continuous film with a thickness of 2 to 5 μm based on aluminum oxide. For samples tested in a wet gas mixture, a violation of the continuity of the internal protective layer was revealed. The outer loosened layer consists of iron oxides, under which a layer with a predominant content of oxygen-containing chromium compounds was revealed.

About the authors

E. A. Karfidov

Institute of High-Temperature Electrochemistry, Ural Branch of the Russian Academy of Sciences

Yekaterinburg, Russia

K. E. Seliverstov

Institute of High-Temperature Electrochemistry, Ural Branch of the Russian Academy of Sciences

Yekaterinburg, Russia

I. D. Filippov

Institute of High-Temperature Electrochemistry, Ural Branch of the Russian Academy of Sciences

Yekaterinburg, Russia

E. V. Nikitina

Institute of High-Temperature Electrochemistry, Ural Branch of the Russian Academy of Sciences

Yekaterinburg, Russia

A. E. Dedyukhin

Institute of High-Temperature Electrochemistry, Ural Branch of the Russian Academy of Sciences

Email: dedyukhin@ihte.ru
Yekaterinburg, Russia

Yu. P. Zaykov

Institute of High-Temperature Electrochemistry, Ural Branch of the Russian Academy of Sciences

Yekaterinburg, Russia

References

  1. Потапов А.М., Мазанников М.В., Зайков Ю.П. Первые стадии переработки нитридного отработавшего ядерного топлива // Физическая химия и электрохимия расплавленных и твердых электролитов: сборник материалов ХIX Российской конференции. Екатеринбург: Издательский Дом «Ажур». 2023. С. 123–126.
  2. Карфидов Э.А., Никитина Е.В., Мазанников М.В., Потапов А.М., Дедюхин А.Е. Коррозия стали ЭП-823 (16Х12МВСФБР) в условиях высокотемпературной обработки ОЯТ // Расплавы. 2024. № 6. С. 581–595.
  3. Семенова И.В., Флорианович Г.М., Хорошилов А.В. Коррозия и защита от коррозии. М.: Физматлит. 2002.
  4. Сокол И.Я., Ульянин Е.А., Фельдгандлер Э.Г. и др. Структура и коррозия металлов и сплавов. Атлас:Справочноеиздание.М.:Металлургия, 1989.
  5. Yadav P., Abro M. A., Lee D.B., Yoon J. High-temperature corrosion of pure Ni3Al and its alloyed (2.99 wt.%Ti) in Ar-0.2%SO2gas environment // Journal of Materials Research and Technology. 2022.17. P. 3055-3065.
  6. Kai W., Lee S.H., Chiang D.L., Chu J.P. The high-temperature corrosion of Fe–28Al and Fe–18Al–10Nb in a H2/H2S/H2O gas mixture // Materials Science and Engineering. 1998.258. P. 146–152.
  7. Kai W., Huang Y-J., Hsu Y-C., Huang R-T., Zhou Y., Kai J-J. The corrosion of FeCoNiAl-based medium- and high-entropy alloys in various ratios of CO2/CO gas mixture // Intermetallics. 2024.173. P. 108–431.
  8. Yu C., Zhang J., Young D. J. High temperature corrosion of Fe-Cr-(Mn/Si) alloys in CO2-H2O-SO2gases // Corrosion Science.2016. 112. P. 214–225.
  9. Shi S., Xu X., Lin X., Zhao W., Zhang Y., Hua Y., Su C., Sun C., Sun J. The temperature impact on the corrosion behavior of nickel-based alloy in a H2O-CO2-H2S-H2mixed gas during in-situ conversion of shale oil // Corrosion Science.2025.245.P. 112–713.
  10. Пойлов В.З., Казанцев А.Л., Сковородников П.В., Саулин Д.В., Углев Н.П., Пузанов А.И. Высокотемпературная газовая коррозия никелевого сплава // Материаловедение. 2021. № 3. С. 42–46.
  11. Бахирев С.О., Дацько А.И., Носач А.Ю., Бычков Д.В. Исследование влияния состава сплавов на скорость газовой коррозии // Проблемы науки.2017. № 11 (24).С. 25–32.
  12. Saunders S.R.J., Monteiro M., Rizzo F. The oxidation behaviour of metals and alloys at high temperatures in atmospheres containing water vapour: A review // Progress in Materials Science. 2008.53. P. 775–837.
  13. Henry S., Mougin J., Wouters Y., Petit J-P., Galerie A. Characterization of chromia scales grown on pure chromium in different oxidizing atmospheres // Materials at High Temperatures. 2000.17. P.231–234.
  14. Hultquist G., Tveten B., HoЁrnlund E. Hydrogen in chromium: influence on the high-temperature oxidation kinetics in H2O, oxide-growth mechanisms, and scale adherence //Oxidation of Metals. 2000.54. P.1–10.
  15. Ehlers J., Young D.J., Smaardijk E.J., Tyagi A.K., Penkalla H.J., Singheiser L. et al. Enhanced oxidation of the 9% Cr steel P91 in water vapour containing environments //Corrosion Science.2006.48.P.3428–3454.
  16. Schutze M., Renusch D., Schorr M. Chemical–mechanical failure of oxide scales on 9% Cr steels in air with H2O //Materials at High Temperatures. 2005.22. P. 113–120.
  17. Galerie A., Henry S., Wouters Y., Mermoux M., Petit J-P., Antoni L. Mechanisms of chromia scale failure during the course of 15–18Cr ferritic stainless steel oxidation in water vapour //Materials at High Temperatures. 2005.22. P. 105–12.
  18. Zґurek J., Michalik M., Schmitz F., Kern T-U., Singheiser L., Quadakkers W.J. The effect of water-vapor content and gas flow rate on the oxidation mechanism of a 10%Cr–ferritic steel in Ar–H2O mixtures //Oxidation of Metals. 2005.63. P. 401–422.
  19. Cheng S-Y., Kuan S-L., Tsai W-T. Effect of water vapor on annealing scale formation on 316 SS //Corrosion Science. 2006.48. P. 634–649.
  20. Peng X., Yan J., Zhou Y., Wang F. Effect of grain refinement on the resistance of 304 stainless steel to breakaway oxidation in wet air //Acta materialia. 2005.53.P.5079–5088.
  21. Shen J., Zhou L., Li T. High-temperature oxidation of Fe–Cr alloys in wet oxygen //Oxidation of Metals.1997.48.P.347–356.
  22. Ehlers J., Young D.J., Smaardijk E.J., Tyagi A.K., Penkalla H.J., Singheiser L. et al. Enhanced oxidation of the 9% Cr steel P91 in water vapour containing environments //Corrosion Science. 2006.48.P.3428–3454.
  23. Rahmel A. Einfluss von Wasserdampf und Kohlendioxyd auf die Oxydation von Nickel in Sauerstoff bei Hohen Temperaturen //Corrosion Science. 1965.5. P.815–820.
  24. Hussain N., Qureshi A.H., Shahid K.A., Chughtai N.A., Khalid F.A. High-temperature oxidation behavior of HASTELLOY C-4 in steam //Oxidation of Metals. 2004.61.P.355–364.
  25. Hussain N., Shahid K.A., Khan I.H., Rahman S. Oxidation of high temperature alloys (superalloys) at elevated temperatures in air: 1 //Oxidation of Metals. 1994.41.P.251–270.
  26. Holcomb G.R., Alman D.E. The effect of manganese additions on the reactive evaporation of chromium in Ni–Cr alloys //Scripta materialia.2006.54.Р.1821–1825.
  27. Zhou C., Yu J., Gong S., Xu H. Influence of water vapor on the isothermal oxidation behavior of low pressure plasma sprayed NiCrAlY coating at high temperature //Surface and Coatings Technology. 2002.161.P.86–91.
  28. Poquillon D.,Monceau D. Application of a Simple Statistical Spalling Model for the Analysis of High-Temperature //Cyclic-Oxidation Kinetics Data.2003.59.P.409–431.
  29. Vialas N.,Monceau D.,Pieraggi B.Effect of Cycle Frequency on High Temperature Oxidation Behavior of Alumina-forming Coatings Used for Industrial Gas Turbine Blades //Materials Science Forum.2004.461.464. P. 747–754.
  30. Yuan J.,Wu X.,Wang W.,Zhu S.,Wang F. Investigation on the Enhanced Oxidation of Ferritic/Martensitic Steel P92 in Pure Steam // Materials.2014.7. P. 2772–2783.
  31. ГОСТ 5632–2014. Легированные нержавеющие стали и сплавы коррозионно-стойкие, жаростойкие и жаропрочные. М.: Стандартинформ, 2015.
  32. ГОСТ 9.305-84. Единая система защиты от коррозии и старения. Покрытия металлические и неметаллические неорганические. Операции технологических процессов получения покрытий. М:Стандартинформ, 1985.
  33. Potapov A.M., Mazannikov M.V., Zaikov Yu.P. Pervyye stadii pererabotki nitridnogo otrabotavshego yadernogo topliva [The first stages of processing nitride spent fuel] // Physical chemistry and electrochemistry of molten and organic electrolytes: collection of materials of theXIX Russian conference. Ekaterinburg: Publishing House “Azhur”. 2023. P. 123–126. [In Russian]
  34. Karfidov E.A., Nikitina E.V., Mazannikov M.V., Potapov A.M., Dedyukhin A.E. Korroziya stali EP-823 (16KH12MVSFBR) v usloviyakh vysokotemperaturnoy obrabotki OYAT [Corrosion of EP-823 steel (16Kh12MVSFBR) under conditions of high-temperature processing of spent nuclear fuel] // Rasplavy (Melts). 2024. № 6. P. 581–595. [In Russian]
  35. Semenova I.V., Florianovich G.M., Khoroshilov A.V. Korroziya i zashchita ot korrozii [Corrosion and corrosion protection]. M.: Fizmatlit. 2002. [In Russian]
  36. Sokol I.Ya., Ulyanin E.A., Feldgandler E.G. et al. Struktura i korroziya metallov i splavov. Atlas: Spravochnoye izdaniye [Structure and corrosion of metals and alloys. Atlas: Reference publication]. M.: Metallurgy. 1989. [In Russian]
  37. Yadav P., Abro M. A., Lee D.B., Yoon J. High-temperature corrosion of pure Ni3Al and its alloyed (2.99 wt.%Ti) in Ar-0.2%SO2gas environment // Journal of Materials Research and Technology. 2022.17. P. 3055-3065.
  38. Kai W., Lee S.H., Chiang D.L., Chu J.P. The high-temperature corrosion of Fe–28Al and Fe–18Al–10Nb in a H2/H2S/H2O gas mixture // Materials Science and Engineering. 1998.258. P. 146–152.
  39. Kai W., Huang Y-J., Hsu Y-C., Huang R-T., Zhou Y., Kai J-J. The corrosion of FeCoNiAl-based medium- and high-entropy alloys in various ratios of CO2/CO gas mixture // Intermetallics. 2024.173. P. 108–431.
  40. Yu C., Zhang J., Young D. J. High temperature corrosion of Fe-Cr-(Mn/Si) alloys in CO2-H2O-SO2gases // Corrosion Science. 2016.112. P. 214–225.
  41. Shi S., Xu X., Lin X., Zhao W., Zhang Y., Hua Y., Su C., Sun C., Sun J. The temperature impact on the corrosion behavior of nickel-based alloy in a H2O-CO2-H2S-H2mixed gas during in-situ conversion of shale oil // Corrosion Science. 2025.245. P. 112–713.
  42. Poilov V.Z., Kazantsev A.L., Skovorodnikov P.V., Saulin D.V., Uglev N.P., Puzanov A.I. Vysokotemperaturnaya gazovaya korroziya nikelevogo splava [High-temperature gas corrosion of nickel alloy] // Materials Science. 2021. №3. P. 42–46.
  43. Bakhirev S.O., Datsko A.I., Nosach A.Yu., Bychkov D.V. Issledovaniye vliyaniya sostava splavov na skorost’ gazovoy korrozii [Study of the influence of alloy composition on the rate of gas corrosion] // Problems of Science. 2017.24. №11. P. 25–32. [In Russian]
  44. Saunders S.R.J., Monteiro M., Rizzo F. The oxidation behaviour of metals and alloys at high temperatures in atmospheres containing water vapour: A review // Progress in Materials Science. 2008.53. P. 775–837. [In Russian]
  45. Henry S., Mougin J., Wouters Y., Petit J-P., Galerie A. Characterization of chromia scales grown on pure chromium in different oxidizing atmospheres // Materials at High Temperatures. 2000.17. P.231–234.
  46. Hultquist G., Tveten B., HoЁrnlund E. Hydrogen in chromium: influence on the high-temperature oxidation kinetics in H2O, oxide-growth mechanisms, and scale adherence //Oxidation of Metals. 2000.54. P.1–10.
  47. Ehlers J., Young D.J., Smaardijk E.J., Tyagi A.K., Penkalla H.J., Singheiser L. et al. Enhanced oxidation of the 9% Cr steel P91 in water vapour containing environments //Corrosion Science.2006.48.P.3428–3454.
  48. Schutze M., Renusch D., Schorr M. Chemical–mechanical failure of oxide scales on 9% Cr steels in air with H2O //Materials at High Temperatures. 2005.22. P. 113–120.
  49. Galerie A., Henry S., Wouters Y., Mermoux M., Petit J-P., Antoni L. Mechanisms of chromia scale failure during the course of 15–18Cr ferritic stainless steel oxidation in water vapour //Materials at High Temperatures. 2005.22. P. 105–12.
  50. Zґurek J., Michalik M., Schmitz F., Kern T-U., Singheiser L., Quadakkers W.J. The effect of water-vapor content and gas flow rate on the oxidation mechanism of a 10%Cr–ferritic steel in Ar–H2O mixtures //Oxidation of Metals. 2005.63. P. 401–422.
  51. Cheng S-Y., Kuan S-L., Tsai W-T. Effect of water vapor on annealing scale formation on 316 SS //Corrosion Science. 2006.48. P. 634–649.
  52. Peng X., Yan J., Zhou Y., Wang F. Effect of grain refinement on the resistance of 304 stainless steel to breakaway oxidation in wet air //Acta materialia. 2005.53.P.5079–5088.
  53. Shen J., Zhou L., Li T. High-temperature oxidation of Fe–Cr alloys in wet oxygen //Oxidation of Metals.1997.48.P.347–356.
  54. Ehlers J., Young D.J., Smaardijk E.J., Tyagi A.K., Penkalla H.J., Singheiser L. et al. Enhanced oxidation of the 9% Cr steel P91 in water vapour containing environments //Corrosion Science. 2006.48.P.3428–3454.
  55. Rahmel A. Einfluss von Wasserdampf und Kohlendioxyd auf die Oxydation von Nickel in Sauerstoff bei Hohen Temperaturen //Corrosion Science. 1965.5. P.815–820.
  56. Hussain N., Qureshi A.H., Shahid K.A., Chughtai N.A., Khalid F.A. High-temperature oxidation behavior of HASTELLOY C-4 in steam //Oxidation of Metals. 2004.61.P.355–364.
  57. Hussain N., Shahid K.A., Khan I.H., Rahman S. Oxidation of high temperature alloys (superalloys) at elevated temperatures in air: 1 //Oxidation of Metals. 1994.41.P.251–270.
  58. Holcomb G.R., Alman D.E. The effect of manganese additions on the reactive evaporation of chromium in Ni–Cr alloys //Scripta materialia.2006.54.Р.1821–1825.
  59. Zhou C., Yu J., Gong S., Xu H. Influence of water vapor on the isothermal oxidation behavior of low pressure plasma sprayed NiCrAlY coating at high temperature //Surface and Coatings Technology. 2002.161.P.86–91.
  60. Poquillon D.,Monceau D. Application of a Simple Statistical Spalling Model for the Analysis of High-Temperature //Cyclic-Oxidation Kinetics Data.2003.59.P.409–431.
  61. Vialas N.,Monceau D.,Pieraggi B.Effect of Cycle Frequency on High Temperature Oxidation Behavior of Alumina-forming Coatings Used for Industrial Gas Turbine Blades //Materials Science Forum.2004.461.464. P. 747–754.
  62. Yuan J.,Wu X.,Wang W.,Zhu S.,Wang F. Investigation on the Enhanced Oxidation of Ferritic/Martensitic Steel P92 in Pure Steam // Materials.2014.7.P.2772–2783.
  63. GOST 5632–2014.Legirovannyye nerzhaveyushchiye stali i splavy korrozionno-stoykiye, zharostoykiye i zharoprochnyye [Alloyed stainless steels and alloys, corrosion-resistant, heat-resistant and heat-resistant]. M.: Standartinform. 2015. [In Russian]
  64. GOST 9.305-84. Yedinaya sistema zashchity ot korrozii i stareniya. Pokrytiya metallicheskiye i nemetallicheskiye neorganicheskiye. Operatsiitekhnologicheskikh protsessov polucheniya pokrytiy [Unified system of protection against corrosion and aging. Metallic and non-metallic inorganic coatings. Operations of technological processes for obtaining coatings]. M: Standartinform. 1985. [In Russian]

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».